China Custom Truck Spare Parts Spline Shaft OEM: 42311-2760 Used for Hino Ranger Dump Truck Superior Quality Rear Axle Drive Shaft carbon fiber drive shaft

Product Description


Product Description

rear axle half axle OEM:42311-2760 for HINO rear wheel half axle shaft

Modle Oem Number of gear The length of the(mm) Hole count
HINO 42311-2480 34 1045 8+2
HINO 42311-3260 29 1104 10
HINO 42311-2760 29 1039 10
HINO 42311-3330 31 1030 10
HINO 42311-3480 31 1109 10
HINO 42311-3470 31 965 10
HINO 42311-2200 29 1067 10+2
HINO 42311-1460 29 991 10+2
HINO 42311-1430 29 1016 10+2
HINO 42311-3890 34 970 10
HINO 42311-3890 34 990 10
HINO 42311-3890 34 1571 10
HINO 42311-3890 34 1030 10
HINO 42311-3890 34 1050 10
HINO 42311-3890 34 1070 10
HINO 42311-3890 34 1090 10
HINO 42311-3890 34 1110 10
HINO 42311-3890 34 1130 10
HINO  42311-3260 RANGER 29 1104/43.46 10
HINO  42311-2760 RANGER 29 1039/40.90 10
HINO  42311-3330 JUMO 31 1030/40.55 10
HINO  42311-3480 JUMO 31 1109/43.66 10
HINO  42311-3470 JUMO 31 965/37.99 10
HINO  42311-2200 KT42 29 1067/42.0 10+2
HINO  42311-1460 KT39 29 991/39.0 10+2
HINO  42311-1430 KT40 29 1016/40.0 10+2
HINO 42311-3690 34 970/38.18 10
HINO 42311-3720 34 1000/39.37 10
HINO 42311-2590 34 1571/40.16 10
HINO 42311-2530 34 1030/40.55 10
HINO 42311-2460 34 1050/41.34 10
HINO 42311-3711 34 1070/42.16 10
HINO 42311-3710 34 1090/42.90 10
HINO 42311-2450 34 1110/43.70 10
HINO 42311-3700 34 1130/44.50 10
HINO   34 1095/43.1 8+2

Company Profile



  Q:Can you do OEM and provide samples firstly?

  A:Yes,OEM and ODM are welcomed ,and with stocks ,samples can be shipped with 3 HangZhou as you need.
  Q:What is the MOQ?payment term? and delivery time

  A:For regular products, MOQ: 100PCS each model;
     Once we get payment, we will ship your order within 20 working days.
     The normal delivery time is 20days, depending on which country you are in.

  Q:Where are you? Can we visit your factory?

  A:Our factory is located in HangZhou, ZheJiang , China.
      lt is close to HangZhou Airport, and the traffic at the west exit of HangZhou Sanquan Expressway is very convenient. 
      All employees of the company sincerely welcome domestic and foreign merchants to visit our company for guidance        and business negotiation.

Shipping Cost:

Estimated freight per unit.

To be negotiated|

Freight Cost Calculator

After-sales Service: 1year
Condition: New
Axle Number: 1
US$ 50/Piece
1 Piece(Min.Order)


Order Sample



Customized Request


The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are two common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are two basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are three types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of two different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.

China Custom Truck Spare Parts Spline Shaft OEM: 42311-2760 Used for Hino Ranger Dump Truck Superior Quality Rear Axle Drive Shaft   carbon fiber drive shaft			China Custom Truck Spare Parts Spline Shaft OEM: 42311-2760 Used for Hino Ranger Dump Truck Superior Quality Rear Axle Drive Shaft   carbon fiber drive shaft
editor by CX 2023-06-05