China CNC Machining Custom Steel Gear Shaft High Precise Spline Gear Shaft for Boat a line drive shaft

Merchandise Description

HangZhou FRIMA is IATF16949 certificated manufacturer ,located in HangZhou,China.We are specialized in production custom made-produced precision Machining Elements. We supply a vast assortment of production remedies, such as machining, and stamping Our engineering group has prosperous knowledge in functioning in this subject for a lot of a long time.
We have professional quality handle staff which is developed up by abundant knowledgeable QC & QA. They will keep track of each and every method of production. Every single component or part will go through our QA for last inspection and tests. Make positive each merchandise is underneath customer’s necessity before CZPT buyers.
Our target is to close the hole and offer reduced price manufacturing throughout the globe. Sourcing your areas with FRIMA is the closest issue to managing your personal manufacturing facility in China. We supply excessive overall flexibility for you and your task demands.

HangZhou FRIMA will provide you with the pursuing rewards and advantages:

·More conserving on manufacturing expense.
·State-of-the-artwork production amenities.
·On web site producing supervision for high quality control.
·Bilingual engineers reporting on your project.
·Reasonable short guide time.

Equipments: CNC machining center, CNC Lathe, milling device, normal lathe, grinding machine, wire-reduce device, top gauge, projector, and other precise kinds.
Resources: Aluminum, Alloy metal, Stainless Steel, brass, and many others.
About eighty% of FRIMAI’s enterprise is exported, and twenty% domestic. FRIMAhas extremely rigid quality management request and program dependent on IATF16949 administration technique.
Any enquiries and orders together with drawing or sample as well as investments are really welcomed. We sincerely would like to cooperate with your firm and develop brilliance.

Function of CNC components
1. Precision Cnc stainless steel areas strictly in accordance to customer’s drawing, packing, and top quality ask for
two. Tolerance: Can be stored at +/-.005mm
3. The most sophisticated CMM inspector to make sure the good quality
4. Skilled technologies engineers and well-qualified staff
5. Fast and well timed shipping and delivery. Speedily&professional support
six. Top quality assurance in accordance with PPAP-3 stage program inIATF16949 

 

WMeasuring Facilties Quadratic Element,Peak Gauge,Micrometer,Gauge Block,Needle Gauge,Plug gauge,Caliper,Screw Thread Gauge
Machining Facilities Machining Tolerance(mm) Mchining Precision(mm) Qty Self-owned
CNC Machining Centre 800×500 .005-.01 20pcs Head Plant
CNC Machining Centre 650×500 .005-.01 5pcs Head Plant
CNC Turning 750×40 .015-.005 20pcs Head Plant
Turning 750×250 .01-.02 10pcs Head Plant
Milling 1200×550 .01-.02 6pcs Head Plant
Grinding 160x360x280 .005-.01 4pcs Head Plant
Grinding 300×680 .01 1pcs Head Plant
Wire-reducing 400×350 .01-.02 4pcs Head Plant

Materials Available for CNC Turning Services

Material Stainless steel SS201 SS303 SS304 SS316 seventeen-4PH SUS440C
Steel  Q235 20#-45#  etc
Brass  C36000(C26800)  C37700(HPb59) C38500(HP6 fifty eight) C27200(CuzN37)etc
Iron 1213 12L14 1215 etc
Bronze C51000 C52100 C5400etc
Aluminum Al6061 Al6063 Al7075 AL5052 and so on
Alloy A2 D2 SKD11 DF2 XW/5 ASP-23

Phrases and Conditions 

Our Processing CNC machining, CNC milling and turning, drilling, grinding, stamping, tapping, 
Floor end Difficult Coating/Black Anodize/ Distinct Anodize/ Difficult Chrome /Clear Zinc/Plasma Niride
Tolerance .005mm
QC Technique one hundred% inspection just before cargo
Drawing structure CAD / PDF/ DWG/ IGS/ Step/So
Packaging Regular bundle / Carton box or Pallet / As for every personalized technical specs
Screening products CMM (Coordinate Measuring Device), Height gauge, Caliper,  Hardness tester, Roughness tester, Projector device, Pin/Angle/Block/Plug/Thickness/Thread/Radius gauge, and so on.
Trade terms EXW, FOB, CIF, As for each the customer’s request
Shipment Conditions 1) -100kg: convey & air freight precedence
2) >100kg: sea freight precedence
three) As per custom-made technical specs
Note All CNC machining elements are personalized-made in accordance to the customer’s drawings or samples, with no stock. If you have any CNC machining parts to be created, please truly feel free of charge to deliver your type drawings/samples to us at any time by e mail.
Surface area Complete Anodized/Zinc/Nickle/ZiNi plating 

Our benefit:
eleven a long time 1-end custom-made metal products manufacturing unit.

We will total diverse processing designs dependent on customers’ processing requirements and merge diverse processing methods to
give buyers the greatest options such as CNC machining turning milling stamping forging extrusion casting bending welding and many others.

ODM/OEM quick service

We can do it you only want to supply your undertaking drawings and samples and we can personalize and manufacture for you.

Supply high-high quality products at a competitive price tag

Tailored processing can be attained within 5 doing work times to get prototypes and little batch creation components to offer clients with
large-good quality and low-value CNC processed items.

 

US $0.1-1
/ Piece
|
10 Pieces

(Min. Order)

###

Application: Automotive Industry
Certification: IATF16949, RoHS, ISO9001
Transport Package: Each Pack by PE Bag, Then Pack in Carton
Specification: SS316/S304, Brass, Aluminum
Trademark: OEM
Origin: Ningbo China

###

Customization:

###

WMeasuring Facilties Quadratic Element,Height Gauge,Micrometer,Gauge Block,Needle Gauge,Plug gauge,Caliper,Screw Thread Gauge
Machining Facilities Machining Tolerance(mm) Mchining Precision(mm) Qty Self-owned
CNC Machining Centre 800×500 0.005-0.01 20pcs Head Plant
CNC Machining Centre 650×500 0.005-0.01 5pcs Head Plant
CNC Turning 750×40 0.015-0.005 20pcs Head Plant
Turning 750×250 0.01-0.02 10pcs Head Plant
Milling 1200×550 0.01-0.02 6pcs Head Plant
Grinding 160x360x280 0.005-0.01 4pcs Head Plant
Grinding 300×680 0.01 1pcs Head Plant
Wire-cutting 400×350 0.01-0.02 4pcs Head Plant

###

Material Stainless steel SS201 SS303 SS304 SS316 17-4PH SUS440C
Steel  Q235 20#-45#  etc
Brass  C36000(C26800)  C37700(HPb59) C38500(HP6 58) C27200(CuzN37)etc
Iron 1213 12L14 1215 etc
Bronze C51000 C52100 C5400etc
Aluminum Al6061 Al6063 Al7075 AL5052 etc
Alloy A2 D2 SKD11 DF2 XW/5 ASP-23

###

Our Processing CNC machining, CNC milling and turning, drilling, grinding, stamping, tapping, 
Surface finish Hard Coating/Black Anodize/ Clear Anodize/ Hard Chrome /Clear Zinc/Plasma Niride
Tolerance 0.005mm
QC System 100% inspection before shipment
Drawing format CAD / PDF/ DWG/ IGS/ STEP/So
Packaging Standard package / Carton box or Pallet / As per customized specifications
Testing equipment CMM (Coordinate Measuring Machine), Height gauge, Caliper,  Hardness tester, Roughness tester, Projector machine, Pin/Angle/Block/Plug/Thickness/Thread/Radius gauge, etc.
Trade terms EXW, FOB, CIF, As per the customer’s request
Shipment Terms 1) 0-100kg: express & air freight priority
2) >100kg: sea freight priority
3) As per customized specifications
Note All CNC machining parts are custom-made according to the customer’s drawings or samples, with no stock. If you have any CNC machining parts to be made, please feel free to send your kind drawings/samples to us anytime by email.
Surface Finish Anodized/Zinc/Nickle/ZiNi plating 
US $0.1-1
/ Piece
|
10 Pieces

(Min. Order)

###

Application: Automotive Industry
Certification: IATF16949, RoHS, ISO9001
Transport Package: Each Pack by PE Bag, Then Pack in Carton
Specification: SS316/S304, Brass, Aluminum
Trademark: OEM
Origin: Ningbo China

###

Customization:

###

WMeasuring Facilties Quadratic Element,Height Gauge,Micrometer,Gauge Block,Needle Gauge,Plug gauge,Caliper,Screw Thread Gauge
Machining Facilities Machining Tolerance(mm) Mchining Precision(mm) Qty Self-owned
CNC Machining Centre 800×500 0.005-0.01 20pcs Head Plant
CNC Machining Centre 650×500 0.005-0.01 5pcs Head Plant
CNC Turning 750×40 0.015-0.005 20pcs Head Plant
Turning 750×250 0.01-0.02 10pcs Head Plant
Milling 1200×550 0.01-0.02 6pcs Head Plant
Grinding 160x360x280 0.005-0.01 4pcs Head Plant
Grinding 300×680 0.01 1pcs Head Plant
Wire-cutting 400×350 0.01-0.02 4pcs Head Plant

###

Material Stainless steel SS201 SS303 SS304 SS316 17-4PH SUS440C
Steel  Q235 20#-45#  etc
Brass  C36000(C26800)  C37700(HPb59) C38500(HP6 58) C27200(CuzN37)etc
Iron 1213 12L14 1215 etc
Bronze C51000 C52100 C5400etc
Aluminum Al6061 Al6063 Al7075 AL5052 etc
Alloy A2 D2 SKD11 DF2 XW/5 ASP-23

###

Our Processing CNC machining, CNC milling and turning, drilling, grinding, stamping, tapping, 
Surface finish Hard Coating/Black Anodize/ Clear Anodize/ Hard Chrome /Clear Zinc/Plasma Niride
Tolerance 0.005mm
QC System 100% inspection before shipment
Drawing format CAD / PDF/ DWG/ IGS/ STEP/So
Packaging Standard package / Carton box or Pallet / As per customized specifications
Testing equipment CMM (Coordinate Measuring Machine), Height gauge, Caliper,  Hardness tester, Roughness tester, Projector machine, Pin/Angle/Block/Plug/Thickness/Thread/Radius gauge, etc.
Trade terms EXW, FOB, CIF, As per the customer’s request
Shipment Terms 1) 0-100kg: express & air freight priority
2) >100kg: sea freight priority
3) As per customized specifications
Note All CNC machining parts are custom-made according to the customer’s drawings or samples, with no stock. If you have any CNC machining parts to be made, please feel free to send your kind drawings/samples to us anytime by email.
Surface Finish Anodized/Zinc/Nickle/ZiNi plating 

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When two splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by five mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to fifty-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows four concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these three components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using two different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these two methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the three factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China CNC Machining Custom Steel Gear Shaft High Precise Spline Gear Shaft for Boat     a line drive shaft		China CNC Machining Custom Steel Gear Shaft High Precise Spline Gear Shaft for Boat     a line drive shaft
editor by czh 2022-12-13