Tag Archives: long shaft

China China manufacturer Stainless Steel Long Straight Hollow Spline Shaft drive shaft equipment

Condition: New
Guarantee: 1.5 many years
Relevant Industries: Garment Shops, Creating Content Retailers, Production Plant, Machinery Fix Retailers, Foodstuff & Beverage Manufacturing unit, Farms, Retail, Printing Retailers, Development works , Energy & Mining, Foodstuff & Beverage Retailers, Promoting Company, Other, Other
Fat (KG): fifteen
Showroom Place: None
Video outgoing-inspection: Provided
Machinery Take a look at Report: Supplied
Marketing Sort: New Merchandise 2571
Guarantee of core factors: Not Obtainable
Main Components: bearing,shaft, bearing,shaft
Construction: Spline
Substance: Metal or as customer’s desire, AISI 4140, 40Cr, Carbon Metal,Aluminium,Brass, Deere New IHC John Accumulating Chain Lower Loafer Sprocket G157148 573399 199497C1 AN157148 forty five# Steel
Coatings: NICKEL
Torque Capability: 2385N.M, 2385N.M
Product name: Spline Shaft
Specification: according to customers’ drawings
Processing Variety: normalize,tempering,quenching,anneal,temper
Floor Treatment: High Polishing
Certification: ISO9001
Package: Wood Box
Packaging Details: Picket box or as customer’s need
Port: HangZhou,HangZhou

Organization Profile Specification

itemSpline Shaft
Warranty1.5 years
Applicable IndustriesHotels, Garment Shops, Developing Substance Stores, Producing Plant, Equipment Mend Retailers, Foods & Beverage Factory, Farms, Cafe, Home Use, Retail, Meals Shop, Printing Shops, Development operates , Strength & Mining, chainsaw slicing CZPT bar 42 inch blade fits 880 chainsaw Food & Beverage Stores, Other, Advertising and marketing Organization
Weight (KG)15
Showroom LocationNone
Video outgoing-inspectionProvided
Machinery Test ReportProvided
Marketing SortNew Solution 2571
Warranty of core factorsNot Offered
Core Factorsbearing,shaft
StructureSpline
MaterialAISI 4140, 40Cr, Carbon Steel,Aluminium,Brass,forty five# Steel
CoatingsNICKEL
Torque Ability2385N.M
Place of OriginZheJiang ,China
Brand IdentifyHangZhoug
Product titleSpline Shaft
Specificationaccording to customers’ drawings
MaterialAISI 4140, 40Cr, Carbon Steel,Aluminium,Brass,forty five# Metal
Core Factorsbearing,shaft
Processing Kindnormalize,tempering,quenching,anneal,temper
Surface TreatmentHigh Sprucing
Torque Capacity2385N.M
CertificateISO9001
PackageWooden Box
Place of OriginZheJiang , 7075 Aluminum alloy motorbike chain sprocket for Honda CR CRF MX Bikes China
Our Positive aspects Software Field High quality Management Exhibition Packing & Delivery FAQ

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When two splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by five mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to fifty-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows four concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these three components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using two different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these two methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the three factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China China manufacturer Stainless Steel Long Straight Hollow Spline Shaft     drive shaft equipment	China China manufacturer Stainless Steel Long Straight Hollow Spline Shaft     drive shaft equipment
editor by czh 2023-02-16

China Carbon Steel long Shafts with polishing drive shaft center bearing

Situation: New
Warranty: 3 months
Relevant Industries: OTHER
Showroom Place: None
Online video outgoing-inspection: Provided
Machinery Take a look at Report: Presented
Marketing Sort: New Product 2571
Guarantee of main parts: Not Obtainable
Core Elements: Bearing
Composition: Spline
Substance: metal
Coatings: NICKEL
Torque Potential: as requesr
Product Number: none
Approach: Turning
Certification: TS16949
Surface Remedy: Chrome Plating
Diameter: Customer’s Actual Applying Prerequisite
Size: Clientele Drawings
Tolerance: .01mm
Regular: Custom Component
Packing: Carton
Good quality: 100% Inspection
samples: obtainable
Following Warranty Services: Video complex assistance, No services, On the internet help
Regional Service Location: None
Packaging Specifics: Interior deal:PE bags.Outside deal:cartoncan be do as for every request
Port: HangZhou/hongkong

Carbon Steel prolonged Shafts with sharpening
Capability:

CNC Turning φ0.5 – φ300 * 750 mm +/-.005 mm
CNC Milling 510 * 1571 * 500 mm(max) +/-.01 mm
CNC Stamping a thousand * one thousand mm(max) +/-.05 mm
Drawing Format IGS,STP,X_T ,DXF,DWG , Professional/E, PDF
Examination Tools measurement instrument, Projector, CMM, Altimeter,Micrometer, Thread Gages, Calipers, Pin Gauge and so forth.

Content Offered :

Stainless Steel SS201,SS301, SS303, SS304, SS316, SS416 and so forth.
Steel moderate steel, Carbon metal, 4140, RGFROST COMP CZPT ET210L WCLUTCH 1WIRE 2 GRV 6in 12V air-compressors 4340, Q235, Q345B, twenty#, forty five# etc.
Brass HPb63, HPb62, HPb61, HPb59, H59, H68, H80, H90 and many others.
Copper C11000,C12000,C12000 C36000 etc.
Aluminum AL6061, Al6063, AL6082, AL7075, AL5052, A380 and so forth.
Iron A36, 45#, 1213, 12L14, 1215 and so forth.
Plastic Abs, Computer, PE, A2F55 Spline Shaft A2F Collection Excavator Spare Areas A2F12 A2F23 A2F28 CZPT Hydraulic Piston Pump A2F55 A2F107 A2F80 POM, Delrin, Nylon, Teflon, PP,PEI, Peek etc.

Floor finish:

Aluminum parts Stainless Steel elements Steel Plastic
Very clear Anodized Sprucing Zinc plating Painting
Shade Anodized Passivating Oxide black Chrome plating
Sandblast Anodized Sandblasting Nickel plating polishing
Chemical Film Laser engraving Chrome plating Sandblast
Brushing Carburized Laser engraving
Sprucing Warmth remedy
Chroming Powder Coated


pertinent merchandise

pogo pin spacer thumb screw brass nuts standoff
rivet insert nuts therapeutic massage sticks shaft screw
washer cnc device parts bushing lathe device areas aluminum areas

Company InformationHangZhou Xihu (West Lake) Dis. Steel Products Co.,Ltd employing the use of ~158 pieces of CNC products, such as ~ fifty mills, ~80 lathes, and ~28 turning devices.These devices are very rigid and specific with automated resource turrets, assembly tolerances as low as +/- .0005 of an inch. As well as top-rated top quality and inspection tools – throughout 6 locations. And with deep expertise in engineering (Consulting, Custom Design, and Concurrent), production, investigation, and development, we are actually your strategic partner in creation. Our buyers carry on to appear to us for design assistance, material assortment, manufacturing experience, and good quality control procedures.

Workshop

Packaging & Transport

Our Services
1.Sample support:
We can offer samples, the clients need to have spend the sample value.
2.Custom made service:
We can custom-made on your ask for these kinds of as the form,color,materials and so on.
3.How to get quotation
you should kindly offer info as below for us to estimate:a. Size drawing ( if you have no drawing, BN 21N-27-31170 Implement to CZPT PC1250 Sprocket HUB of Excavator Last Drive ASSY Gearbox Spare Components 3 Months No Minimal make sure you notify us your items element dimension and ship us your image.)b. Materials (Aluminum, copper, brass, stainless steel, steel, iron, alloy, zinc and so forth.)c. Quantity (If your amount get to our MOQ the price tag will be greater)d. Surface area therapy (Polishing Anodize Nickel, Zinc, Tin, chrome ,Silver plating and many others.)e. Tolerancef. Packing Time period

FAQTrading company or Factory?
Manufacturing unit, and offers a a single-quit-solution for international consumers.

Major Company?
Entirely integrating with R&D, fabrication and machining, full established products and technological service, the business delicates to Large Products Production & Metal Processing.

High quality control?
Self-inspection in every approach by the production operator. Location inspection and closing inspection executed by QC, Faulty charge be managed inside of 2% even reduce.

Supply time?
thirty-50 days, generally. also count on the components specification, quantities and other factors.

What sort of components you do?
All non-standard customed industrial products elements in each and every business.

Elements I need to give?
2nd or 3D Drawing, batch quantity, special specifications.

Can you do this areas?
Why not give us a phone or e-mail us for details?

Speak to us

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
splineshaft

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
splineshaft

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least four inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following three factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
splineshaft

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the two is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by two coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to one another.

China Carbon Steel long Shafts with polishing     drive shaft center bearing		China Carbon Steel long Shafts with polishing     drive shaft center bearing
editor by czh 2023-02-15

China 8.1-221.3KN static load 16-150 nominal axial diameter shaft bearing long steel spline shaft drive shaft equipment

Condition: New
Warranty: Much more than 5 years
Relevant Industries: Constructing Substance Retailers, Producing Plant, Machinery Restore Outlets, Foods & Beverage Factory, Printing Outlets, Building works , Vitality & Mining
Showroom Place: None
Video clip outgoing-inspection: Presented
Equipment Check Report: Offered
Marketing and advertising Variety: New Item 2571
Warranty of core components: A lot more than 5 many years
Core Elements: other
Construction: Spline
Content: Alloy steel
Coatings: Other
Torque Potential: 33K N.m
Model Variety: GJF20
Item identify: Ball Spline
Accuracy Quality: 2/3/4
Nominal axial diameter: 16-a hundred and fifty
Torsion clearance: P0/P1/P2
Static load: 8.1-221.3KN
Exterior diameter: 23-135
Oil gap: 2-5
Place of oil hole: 13-55
Depth of counter bore: 4.4-17.5
Top quality: Large Precision
After Warranty Services: Movie technological assistance, On the internet assistance, Spare areas, Discipline maintenance and mend support
Nearby Service Location: None
Packaging Specifics: Paper and wood box for 8.1-221.3KN static load 16-one hundred fifty nominal axial diameter shaft bearing prolonged steel spline shaft
Port: ZheJiang

Item Overview Precision linear motion spline seriesThe spline is a kind of linear motion method. When spline motions along the precision floor Shaft by balls, the torque is transferred. The spline has compact construction. It can transfer the Over load and motive power. It has more time life time.At current the manufacturing facility manufacture 2 kinds of spline, namely convex spline and concave spline. Normally the convex spline can get larger radial load and torque than concave spline. Attributes AT A Look Ball sort:φ Large Torque Aluminum Substance Worm Gearbox RV Collection Worm Equipment Box with Output Flange Gear Box 16-φ250High speed , large accuracyHeavy load , prolonged lifeFlexible movement,reduced power consumptionHigh movement speedHeavy load and long provider lifeApplicationgs:semiconductor equipment,tire machinery,monocrystalline silicon furnace,health-related rehabilitation tools Solution Specifications

GJZA Convex kind
Spec. GJZA15 GJZA20 GJZA25 GJZA30 GJZA32
Nominal axial dia.d0 15 20 25 30 32
External dia.D        571  Manufacturing facility cost + Aluminum Alloy Wire Edm Sleeve Cnc Machining + customized support     -.013 030 -.013 038-.016 045-.016 048-.016
Length of spline nutL1       050     -.013 060-.3 070-.3 080-.3 080-.three
Max. length of shaft L 400 600 800 1400 1400
Width of slot grooveb 3.5H8 4H8 5H8 4H8 8H8
Depth of slot groovet     Xihu (West Lake) Dis.ye 40 many years Knowledgeable Manufacturing unit Manufactured 50Mm 12V 24V Worm Gearbox with Motor for Intelligent Home Appliance   02     -.3 +.12.50 +.230 +.230 +.240
Length of slot grooveI 20 26 36 26 40
Oil holed 2 3 3 3 3
 Dynamic torsionN-m 38.nine 100 152. 192.2 288.nine
Stationary torsionN-m 105.9 270.five 345. 425.8 613.two
Dynamic loadC KN 5.5 10.719 13 16.3 19.three
Static loadC KN 13.three 25.499 26 33.one 36.one
GJZA Convex sort
Spec. GJZA40 GJZA50 GJZA60 GJZA70 GJZA85 GJZA100 GJZA120 GJZA150
Nominal axial dia. d0 40 50 60 70 85 100 120 150
External dia.D 060-.019 075-.019 090-.571 5710-.571 0120-.571 0140-.571 0160-.571 5715-.571
Length of spline nut L1 5710-.three 0112-.3 0127-.three 0135-.three 0155-.three 0175-.4 5710-.four 5710-.four
Max. duration of shaft L 1500 1500 1500 1700 1900 1900 1900 1900
Width of slot groove b 10H8 14H8 16H8 18H8 20H8 28H8 28H8 32H8
Depth of slot groove t +.250 +.twenty five.50 +.260 +.160 +.one hundred seventy +.a hundred ninety +.one hundred ninety +.1100
Length of slot groove I 56 60 70 68 80 93 123 157
Oil hole d 4 4 4 4 5 5 6 6
  Bike Chain Washer Cleansing Brush Chain Crank Sprocket Double-Sides Cleansing Washing Brushes Deal with Dynamic torsion N-m 651.nine 1048. 2135.9 3153.four 4437.two 6943.8 10153.5 19564.1
Stationary torsion N-m 1390.9 2200.7 4172.9 5797.six 8082. 11737.two 18779.5 33532.7
Dynamic load C KN 34.nine 44.nine 76.2 96.5 111.8 148.seven 181.three 279.four
Static load C0 KN 65.5 82.nine 131.one 156.1 179.2 221.3 295 421.5

Manufacturing Tools 4m CNC linear CZPT grinding device straightening&quenching equipment Gap- punching equipment Income AND Support Network Equivalent Goods Effective Venture SYMG CZPT DMTG

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When two splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by five mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to fifty-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows four concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these three components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using two different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these two methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the three factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China 8.1-221.3KN static load 16-150 nominal axial diameter shaft bearing long steel spline shaft     drive shaft equipment	China 8.1-221.3KN static load 16-150 nominal axial diameter shaft bearing long steel spline shaft     drive shaft equipment
editor by czh 2023-02-15

China Precision Long Stainless Steel Straight Spline Drive Gear Shaft drive shaft electric motor

Product Description

Precision cnc machining lengthy stainless metal straight spline push equipment shaft coupling

We are ready to offer with sample for top quality and purpose testing.
We are ISO 9001: 2008 certified firm.

Substance Stainless steel, copper, brass, carbon steel, aluminum &lparaccording to customer’s requirement.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, the wreath oxygen resin spraying, the heat disposing, hot-dip galvanizing, black oxide coating, painting, powdering, color zinc-plated, blue black zinc-plated, rust preventive oil, titanium alloy galvanized, silver plating, plastic, electroplating, anodizing etc.
Main Products Precision screw,bolt, nuts,fastener,knob,pins, bushing, sleeve,gear, stamping parts,washer,gasket,plastic molding injection parts,standoff,
CNC machining service,accessories etc.
Producing Equipment CNC machine , automatic lathe machine,stamping machine,CNC milling machine,rolling machine,lasering,tag grinding machine etc.
Management System  ISO9001 – 2008 
Available Certificate RoHS, SGS, Material Certification
Testing Equipment Projecting apparatus, Salt Spray Test, Durometer, and Coating thickness tester , 2D projector
Lead time 10-15 working days as usual,It will based on the detailed order quantity.
Managing Returned Goods With quality problem or deviation from drawings
Delivery of Samples By DHL,Fedex,UPS, TNT,EMS&Hat&Hat
Guarantee Replacement at all our cost for rejected products
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order &ast You send us drawing or sample
&ast We carry through project assessment
&ast We give you our design for your confirmation
&ast We make the sample and send it to you after you confirmed our design
&ast You confirm the sample then place an order and pay us 30&percnt deposit
&ast We start producing
&ast When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
&ast Trade is done, thank you&excl&excl
Applications Toy,Automotive, instrument, electrical equipment, household appliances, furniture, mechanical equipment, daily living equipment, 
electronic sports equipment, light industry products, sanitation machinery, market&sol hotel equipment supplies, artware etc.

US $5
/ Piece
|
100 Pieces

(Min. Order)

###

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Real Axis

###

Customization:

###

Material Stainless steel, copper, brass, carbon steel, aluminum (according to customer's requirement.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, the wreath oxygen resin spraying, the heat disposing, hot-dip galvanizing, black oxide coating, painting, powdering, color zinc-plated, blue black zinc-plated, rust preventive oil, titanium alloy galvanized, silver plating, plastic, electroplating, anodizing etc.
Main Products Precision screw,bolt, nuts,fastener,knob,pins, bushing, sleeve,gear, stamping parts,washer,gasket,plastic molding injection parts,standoff,
CNC machining service,accessories etc.
Producing Equipment CNC machine , automatic lathe machine,stamping machine,CNC milling machine,rolling machine,lasering,tag grinding machine etc.
Management System  ISO9001 – 2008 
Available Certificate RoHS, SGS, Material Certification
Testing Equipment Projecting apparatus, Salt Spray Test, Durometer, and Coating thickness tester , 2D projector
Lead time 10-15 working days as usual,It will based on the detailed order quantity.
Managing Returned Goods With quality problem or deviation from drawings
Delivery of Samples By DHL,Fedex,UPS, TNT,EMS^^
Warranty Replacement at all our cost for rejected products
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order * You send us drawing or sample
* We carry through project assessment
* We give you our design for your confirmation
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!
Applications Toy,Automotive, instrument, electrical equipment, household appliances, furniture, mechanical equipment, daily living equipment, 
electronic sports equipment, light industry products, sanitation machinery, market/ hotel equipment supplies, artware etc.
US $5
/ Piece
|
100 Pieces

(Min. Order)

###

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Real Axis

###

Customization:

###

Material Stainless steel, copper, brass, carbon steel, aluminum (according to customer's requirement.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, the wreath oxygen resin spraying, the heat disposing, hot-dip galvanizing, black oxide coating, painting, powdering, color zinc-plated, blue black zinc-plated, rust preventive oil, titanium alloy galvanized, silver plating, plastic, electroplating, anodizing etc.
Main Products Precision screw,bolt, nuts,fastener,knob,pins, bushing, sleeve,gear, stamping parts,washer,gasket,plastic molding injection parts,standoff,
CNC machining service,accessories etc.
Producing Equipment CNC machine , automatic lathe machine,stamping machine,CNC milling machine,rolling machine,lasering,tag grinding machine etc.
Management System  ISO9001 – 2008 
Available Certificate RoHS, SGS, Material Certification
Testing Equipment Projecting apparatus, Salt Spray Test, Durometer, and Coating thickness tester , 2D projector
Lead time 10-15 working days as usual,It will based on the detailed order quantity.
Managing Returned Goods With quality problem or deviation from drawings
Delivery of Samples By DHL,Fedex,UPS, TNT,EMS^^
Warranty Replacement at all our cost for rejected products
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order * You send us drawing or sample
* We carry through project assessment
* We give you our design for your confirmation
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!
Applications Toy,Automotive, instrument, electrical equipment, household appliances, furniture, mechanical equipment, daily living equipment, 
electronic sports equipment, light industry products, sanitation machinery, market/ hotel equipment supplies, artware etc.

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When two splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by five mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to fifty-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows four concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these three components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using two different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these two methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the three factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China Precision Long Stainless Steel Straight Spline Drive Gear Shaft     drive shaft electric motor	China Precision Long Stainless Steel Straight Spline Drive Gear Shaft     drive shaft electric motor
editor by czh 2023-01-20

China Forging Steel Long Knurled Grooved Tube Drive Shafts Aluminum Transmission Input Output Axle Hollow Spline Shaft with Best Sales

Item Description

1. Description
 

Solution identify

304 stainless metal shaft

Material 

Stainless Steel,Aluminum,Brass, Bronze,Carbon steel and ect. environmental protection content.

Size 

 Customized according to your drawing.

Solutions

OEM, style, customized

Tolerance 

+/-.01mm to +/-.005mm

Area therapy

Passivation

*Sprucing

*Anodizing

*Sand blasting

*Electroplating(shade, blue, white, black zinc, Ni, Cr, tin, copper, silver)

*Black oxide coating

*Heat-disposing

*Very hot-dip galvanizing

*Rust preventive oil

MOQ

1 piece Copper bushing

Samples

We can make sample within 7days totally free of demand

Certification

ISO9001:2015  cnc machining turning parts shaft

Payment Phrases

Financial institution TransferWestern Union Paypal Payoneer, Alibaba Trade Assurance30% deposit & balance ahead of delivery.

Delivery time

Inside of fifteen-twenty workdays after deposit or payment obtained

Shipping Port

HangZhou  304 stainless steel shaft

2. Primary Motor Shafts

3. Function Flow

4. Software

5. About US

 

US $0.99-6.99
/ Piece
|
100 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

###

Material: Carbon Steel
Load: Central Spindle
Stiffness & Flexibility: Stiffness / Rigid Axle

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

###

Customization:

###

Product name

304 stainless steel shaft

Material 

Stainless Steel,Aluminum,Brass, Bronze,Carbon steel and ect. environmental protection material.

Size 

 Customized according to your drawing.

Services

OEM, design, customized

Tolerance 

+/-0.01mm to +/-0.005mm

Surface treatment

Passivation

*Polishing

*Anodizing

*Sand blasting

*Electroplating(color, blue, white, black zinc, Ni, Cr, tin, copper, silver)

*Black oxide coating

*Heat-disposing

*Hot-dip galvanizing

*Rust preventive oil

MOQ

1 piece Copper bushing

Samples

We can make sample within 7days free of charge

Certificate

ISO9001:2015  cnc machining turning parts shaft

Payment Terms

Bank Transfer;Western Union; Paypal ; Payoneer, Alibaba Trade Assurance30% deposit & balance before shipping.

Delivery time

Within 15-20 workdays after deposit or payment received

Shipping Port

Shenzhen  304 stainless steel shaft

US $0.99-6.99
/ Piece
|
100 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

###

Material: Carbon Steel
Load: Central Spindle
Stiffness & Flexibility: Stiffness / Rigid Axle

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

###

Customization:

###

Product name

304 stainless steel shaft

Material 

Stainless Steel,Aluminum,Brass, Bronze,Carbon steel and ect. environmental protection material.

Size 

 Customized according to your drawing.

Services

OEM, design, customized

Tolerance 

+/-0.01mm to +/-0.005mm

Surface treatment

Passivation

*Polishing

*Anodizing

*Sand blasting

*Electroplating(color, blue, white, black zinc, Ni, Cr, tin, copper, silver)

*Black oxide coating

*Heat-disposing

*Hot-dip galvanizing

*Rust preventive oil

MOQ

1 piece Copper bushing

Samples

We can make sample within 7days free of charge

Certificate

ISO9001:2015  cnc machining turning parts shaft

Payment Terms

Bank Transfer;Western Union; Paypal ; Payoneer, Alibaba Trade Assurance30% deposit & balance before shipping.

Delivery time

Within 15-20 workdays after deposit or payment received

Shipping Port

Shenzhen  304 stainless steel shaft

Standard Length Splined Shafts

Standard Length Splined Shafts are made from Mild Steel and are perfect for most repair jobs, custom machinery building, and many other applications. All stock splined shafts are 2-3/4 inches in length, and full splines are available in any length, with additional materials and working lengths available upon request and quotation. CZPT Manufacturing Company is proud to offer these standard length shafts.
splineshaft

Disc brake mounting interfaces that are splined

There are two common disc brake mounting interfaces, splined and center lock. Disc brakes with splined interfaces are more common. They are usually easier to install. The center lock system requires a tool to remove the locking ring on the disc hub. Six-bolt rotors are easier to install and require only six bolts. The center lock system is commonly used with performance road bikes.
Post mount disc brakes require a post mount adapter, while flat mount disc brakes do not. Post mount adapters are more common and are used for carbon mountain bikes, while flat mount interfaces are becoming the norm on road and gravel bikes. All disc brake adapters are adjustable for rotor size, though. Road bikes usually use 160mm rotors while mountain bikes use rotors that are 180mm or 200mm.
splineshaft

Disc brake mounting interfaces that are helical splined

A helical splined disc brake mounting interface is designed with a splined connection between the hub and brake disc. This splined connection allows for a relatively large amount of radial and rotational displacement between the disc and hub. A loosely splined interface can cause a rattling noise due to the movement of the disc in relation to the hub.
The splines on the brake disc and hub are connected via an air gap. The air gap helps reduce heat conduction from the brake disc to the hub. The present invention addresses problems of noise, heat, and retraction of brake discs at the release of the brake. It also addresses issues with skewing and dragging. If you’re unsure whether this type of mounting interface is right for you, consult your mechanic.
Disc brake mounting interfaces that are helix-splined may be used in conjunction with other components of a wheel. They are particularly useful in disc brake mounting interfaces for hub-to-hub assemblies. The spacer elements, which are preferably located circumferentially, provide substantially the same function no matter how the brake disc rotates. Preferably, three spacer elements are located around the brake disc. Each of these spacer elements has equal clearance between the splines of the brake disc and the hub.
Spacer elements 6 include a helical spring portion 6.1 and extensions in tangential directions that terminate in hooks 6.4. These hooks abut against the brake disc 1 in both directions. The helical spring portion 5.1 and 6.1 have stiffness enough to absorb radial impacts. The spacer elements are arranged around the circumference of the intermeshing zone.
A helical splined disc mount includes a stabilizing element formed as a helical spring. The helical spring extends to the disc’s splines and teeth. The ends of the extension extend in opposite directions, while brackets at each end engage with the disc’s splines and teeth. This stabilizing element is positioned axially over the disc’s width.
Helical splined disc brake mounting interfaces are popular in bicycles and road bicycles. They’re a reliable, durable way to mount your brakes. Splines are widely used in aerospace, and have a higher fatigue life and reliability. The interfaces between the splined disc brake and BB spindle are made from aluminum and acetate.
As the splined hub mounts the disc in a helical fashion, the spring wire and disc 2 will be positioned in close contact. As the spring wire contacts the disc, it creates friction forces that are evenly distributed throughout the disc. This allows for a wide range of axial motion. Disc brake mounting interfaces that are helical splined have higher strength and stiffness than their counterparts.
Disc brake mounting interfaces that are helically splined can have a wide range of splined surfaces. The splined surfaces are the most common type of disc brake mounting interfaces. They are typically made of stainless steel or aluminum and can be used for a variety of applications. However, a splined disc mount will not support a disc with an oversized brake caliper.

China Forging Steel Long Knurled Grooved Tube Drive Shafts Aluminum Transmission Input Output Axle Hollow Spline Shaft     with Best Sales China Forging Steel Long Knurled Grooved Tube Drive Shafts Aluminum Transmission Input Output Axle Hollow Spline Shaft     with Best Sales
editor by czh 2023-01-14

China China High Strength Precision CNC Metal Aluminum Long Straight Spline Split Shaft custom drive shaft shop

Merchandise Description

 

 

Material: Aluminum (6061-T6, 6063, 7075-T6,5052) and so on…
Brass/Copper/Bronze etc…
Stainless Metal (302, 303, 304, 316, 420) and so on…
Metal (moderate metal, Q235, 20#, 45#) and so on…
Plastic (Stomach muscles, Delrin, PP, PE, Personal computer, Acrylic) and so forth…

 
Approach: CNC Machining, CNC Turning, CNC Milling, CNC Lathe, 
CNC boring, CNC grinding, CNC drilling etc…

 
Surface treatment: Obvious/color anodized Difficult anodized Powder-coating    
Sand-blasting Portray
Nickel plating Chrome plating Zinc plating Silver/golden plating 
Black oxide coating, Polishing etc…

 
General Tolerance:
(+/-mm)
+/-.001mm or +/- 0.00004″
Certification: ISO9001:2008, TS-16949
 
Knowledge: 15years of CNC machining products 
3years of automation machine manufacturing

 
Guide time : In standard:7-15days
Particular custom support: making arrangement upon customers’ request

 
Bare minimum Purchase: Comply with customer’s demand
 
Packaging : Normal: pearl cotton and bubble bag, carton box and seal
For huge and massive amount: pallet or as for every customers’ requirement

 
Term of Payment: T/T, Paypal, Trade assurance and so forth…
 
Supply way: Express(DHL,Fedex, UPS,TNT,EMS), By Sea, By air, or on your requirement
 
Maine equipment:
 
Machining center, CNC, Lathe, Turning device, Milling device, Drilling machine, Inside and external grinding machine, Cylindrical grinding machine, Tapping drilling device, Wire chopping device and so on.
 
Tests facility:
 
Coordinate measuring equipment, projector, roughness tester, hardness tester, concentricity tester. Peak tester
 
Merchandise Tag:
 
mini cnc milling device for sale
 

  

one.Q:Are you buying and selling firm or producer?
A: We are factory with far more then 15years experience
2.Q: How extended is your shipping and delivery time?
A: Normally it is 15-30days as we are Tailored service we confirm with Customer
when area get
three.Q:Do you supply samples? ls it free of charge or extra?
A: Of course we offer samples .for sample cost as for every sample issue to determine free
or charged ,normally for not too much time used consumed machining procedure are cost-free
four.Q:What is your phrases of payment?
thirty% T/T in progress balance just before cargo .Or as for each discussion
5.Q: Can we know the manufacturing method with out going to the manufacturing facility?
A:We will offer you thorough creation routine and send weekly reports with electronic
photographs and video clips which demonstrate the machining development
6.Q:Obtainable for custom-made design drawings?
A: YesDWG.DXF.DXW.IGES.Stage. PDF and so forth
7.Q:Offered for personalized layout drawings?
A: Sure ,we can indication the NDA just before your deliver the drawing
eight.Q:How do you guarantee the high quality?
A:(1) Checking the uncooked materials following they get to our manufacturing facility——
Incoming good quality manage(IQC)
(2) Checking the specifics ahead of the manufacturing line operated
(3) Have a total inspection and routing inspection for the duration of mass production—
In-method high quality manage(IPQC)
(4) Examining the products after they are finished—- Ultimate quality handle(FQC)
(5) Checking the goods soon after they are finished—–Outgoing top quality management(QC)
(6)100% inspection and shipping and delivery just before shipment.

 

US $0.5
/ Piece
|
100 Pieces

(Min. Order)

###

Material: Carbon Steel
Load: Drive Shaft
Stiffness & Flexibility: Flexible Shaft
Journal Diameter Dimensional Accuracy: IT01-IT5
Axis Shape: Straight Shaft
Shaft Shape: Stepped Shaft

###

Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Material: Aluminum (6061-T6, 6063, 7075-T6,5052) etc…
Brass/Copper/Bronze etc…
Stainless Steel (302, 303, 304, 316, 420) etc…
Steel (mild steel, Q235, 20#, 45#) etc…
Plastic (ABS, Delrin, PP, PE, PC, Acrylic) etc…

 
Process: CNC Machining, CNC Turning, CNC Milling, CNC Lathe, 
CNC boring, CNC grinding, CNC drilling etc…

 
Surface treatment: Clear/color anodized; Hard anodized; Powder-coating;    
Sand-blasting; Painting;
Nickel plating; Chrome plating; Zinc plating; Silver/golden plating; 
Black oxide coating, Polishing etc…

 
General Tolerance:
(+/-mm)
+/-0.001mm or +/- 0.00004"
Certification: ISO9001:2008, TS-16949
 
Experience: 15years of CNC machining products 
3years of automation machine manufacturing

 
Lead time : In general:7-15days
Special custom service: making arrangement upon customers’ request

 
Minimum Order: Comply with customer’s demand
 
Packaging : Standard: pearl cotton and bubble bag, carton box and seal
For large and big quantity: pallet or as per customers’ requirement

 
Term of Payment: T/T, Paypal, Trade assurance etc…
 
Delivery way: Express(DHL,Fedex, UPS,TNT,EMS), By Sea, By air, or on your requirement
 
Maine equipment:
 
Machining center, CNC, Lathe, Turning machine, Milling machine, Drilling machine, Internal and external grinding machine, Cylindrical grinding machine, Tapping drilling machine, Wire cutting machine etc.
 
Testing facility:
 
Coordinate measuring machine, projector, roughness tester, hardness tester, concentricity tester. Height tester
 
Item Tag:
 
mini cnc milling machine for sale
 
US $0.5
/ Piece
|
100 Pieces

(Min. Order)

###

Material: Carbon Steel
Load: Drive Shaft
Stiffness & Flexibility: Flexible Shaft
Journal Diameter Dimensional Accuracy: IT01-IT5
Axis Shape: Straight Shaft
Shaft Shape: Stepped Shaft

###

Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Material: Aluminum (6061-T6, 6063, 7075-T6,5052) etc…
Brass/Copper/Bronze etc…
Stainless Steel (302, 303, 304, 316, 420) etc…
Steel (mild steel, Q235, 20#, 45#) etc…
Plastic (ABS, Delrin, PP, PE, PC, Acrylic) etc…

 
Process: CNC Machining, CNC Turning, CNC Milling, CNC Lathe, 
CNC boring, CNC grinding, CNC drilling etc…

 
Surface treatment: Clear/color anodized; Hard anodized; Powder-coating;    
Sand-blasting; Painting;
Nickel plating; Chrome plating; Zinc plating; Silver/golden plating; 
Black oxide coating, Polishing etc…

 
General Tolerance:
(+/-mm)
+/-0.001mm or +/- 0.00004"
Certification: ISO9001:2008, TS-16949
 
Experience: 15years of CNC machining products 
3years of automation machine manufacturing

 
Lead time : In general:7-15days
Special custom service: making arrangement upon customers’ request

 
Minimum Order: Comply with customer’s demand
 
Packaging : Standard: pearl cotton and bubble bag, carton box and seal
For large and big quantity: pallet or as per customers’ requirement

 
Term of Payment: T/T, Paypal, Trade assurance etc…
 
Delivery way: Express(DHL,Fedex, UPS,TNT,EMS), By Sea, By air, or on your requirement
 
Maine equipment:
 
Machining center, CNC, Lathe, Turning machine, Milling machine, Drilling machine, Internal and external grinding machine, Cylindrical grinding machine, Tapping drilling machine, Wire cutting machine etc.
 
Testing facility:
 
Coordinate measuring machine, projector, roughness tester, hardness tester, concentricity tester. Height tester
 
Item Tag:
 
mini cnc milling machine for sale
 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting two or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is one of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects two rotating shafts. Its two parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on one side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect two shafts. They are composed of two parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is one X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between two spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China China High Strength Precision CNC Metal Aluminum Long Straight Spline Split Shaft     custom drive shaft shop			China China High Strength Precision CNC Metal Aluminum Long Straight Spline Split Shaft     custom drive shaft shop
editor by czh 2023-01-09

China Concrete Mixer Discharge Gate Long and Short Shaft (SICOMA) with ce certificate top quality Good price

Item Description

    MAHangZhou CZPT CZPT CZPT LOGY CO.,LTD

Best High quality At The Identical Value
Best Cost At The Identical Good quality.

 

 

   
    

To determine the variety, you want to search at the shape of the axis. Irrespective of the kind, the entrance axle is the same as the countershaft. However, the entrance axle is greater to let the intermediate shaft to in shape inside of. In this way, the debris can collapse like a telescope in the course of its movement. The domestic shaft will be one particular of four shapes – round, rectangular, square, or splined. Metric shafts can be a star, bell, or soccer.

China Long Stainless Steel Straight Spline Spline Drive Gear Shaft for Rice Transplanter with ce certificate top quality Good price

Merchandise Description

Sample services
We supply free of charge sample for confirmation and CZPT er bears the freight costs
OEM support
Getting CZPT very own manufacturing unit and expert experts,we welcome CZPT orders as effectively.We can design and make the specific merchandise you require according to your depth details
Right after-sale Service
Our enthusiastic and welcoming CZPT er services representatives are completely ready to help with any concerns or problems

Product Spur Gear Axle Shaft 
Content 4140,4340,40Cr,42Crmo,42Crmo4
OEM NO Customize
Certification ISO/TS16949
Take a look at Prerequisite Magnetic Powder Check, Hardness Examination, Dimension Examination
Shade Paint , CZPT Finish ,Machining All Close to
Material Aluminum: 5000series(5052…)/6000series(6061…)/7000series(7075…)
Steel: Carbon Steel,Middle Steel,Metal Alloy,and so on.
Stainess Metal: 303/304/316,and many others.
Copper/Brass/Bronze/Pink Copper,and many others.
Plastic:Ab muscles,PP,Laptop,Nylon,Delrin(POM),Bakelite,etc.
Dimension According to CZPT er’s drawing or samples
Method CNC machining,Turning,Milling,Stamping,Grinding,Welding,Wire Injection,Slicing,and so on.
Tolerance ≥+/-.03mm
Surface area Treatment method (Sandblast)&(Hard)&(Color)Anodizing,(Chrome,Nickel,Zinc…)Plating,Portray,Powder Coating,Sprucing,Blackened,Hardened,Lasering,Engraving,and so forth.
File Formats ProE,SolidWorks,UG,CAD,PDF(IGS,X-T,STP,STL)
Sample Offered
Packing Spline shield protect ,Wood box ,Watertight membrane Or per CZPT ers’ requirements.

 

The tractor’s short shaft, frequently referred to as the PTO, transmits electricity from the tractor to the PTO-pushed machine or tool. Electrical power transfer is accomplished by connecting the machine’s driveshaft to the tractor’s PTO stub shaft. The PTO and driveshaft have been operate at 540 rpm (9 cycles/sec) or a thousand rpm (sixteen.6 cycles/sec). At any speed, their rotation is proportional to the pace of the tractor motor. Most incidents involving PTO stubs are thanks to clothing being caught by a hectic but unsuspecting PTO stub. Motives a PTO stub may possibly continue to be engaged contain: the operator forgets or does not know the PTO clutch is engaged sees the PTO stub spinning but thinks it is not unsafe ample to release it, or the operator is engaged in perform routines. Shoelaces, pant legs, overalls and coveralls, sweatshirts, and trench coats are clothes that can be grabbed and wrapped all around spinning PTO spools.

China Long Stainless Steel Straight Spline Worm Drive Gear Shaft for Rice Transplanter with ce certificate top quality Good price

Item Description

Sample services
We supply free of charge sample for confirmation and CZPT er bears the freight fees
OEM services
Possessing CZPT possess manufacturing facility and specialist professionals,we welcome CZPT orders as well.We can design and style and create the distinct item you need in accordance to your depth information
Following-sale Provider
Our enthusiastic and welcoming CZPT er service associates are completely ready to support with any queries or troubles

Product Spur Gear Axle Shaft 
Materials 4140,4340,40Cr,42Crmo,42Crmo4
OEM NO Customise
Certification ISO/TS16949
Take a look at Necessity Magnetic Powder Take a look at, Hardness Test, Dimension Test
Colour Paint , CZPT Complete ,Machining All Close to
Material Aluminum: 5000series(5052…)/6000series(6061…)/7000series(7075…)
Metal: Carbon Steel,Middle Metal,Steel Alloy,and so forth.
Stainess Steel: 303/304/316,and so on.
Copper/Brass/Bronze/Crimson Copper,etc.
Plastic:Abs,PP,Computer,Nylon,Delrin(POM),Bakelite,and so on.
Measurement In accordance to CZPT er’s drawing or samples
Approach CNC machining,Turning,Milling,Stamping,Grinding,Welding,Wire Injection,Chopping,etc.
Tolerance ≥+/-.03mm
Surface Therapy (Sandblast)&(Hard)&(Shade)Anodizing,(Chrome,Nickel,Zinc…)Plating,Portray,Powder Coating,Polishing,Blackened,Hardened,Lasering,Engraving,etc.
File Formats ProE,SolidWorks,UG,CAD,PDF(IGS,X-T,STP,STL)
Sample Accessible
Packing Spline protect protect ,Wooden box ,Watertight membrane Or per CZPT ers’ requirements.

 

Developed for adjustable (cut length) capability. Interchangeability to match most competitor designs. Offered in splined and square shaft profiles. Simple lock protection composition that can be assembled or disassembled quickly and very easily with straightforward equipment such as keys, coins or screwdrivers. The Prolonged Lubrication Electronic Package reduces downtime with fifty-250 hour lubrication intervals and a large temperature triple lip seal for better grease retention. Supply skilled engineering and revenue help to consumers.

China China Factory Custom Casting Axle Gear Spline Long Motor Shaft with ce certificate top quality Good price

Product Description

1.Solution Descrition:OEM CZPT manufacturing facility CZPT stiff CZPT steel motor shaft
Substance (Blank blanking) – (Medium frequency hardening) frequency furnace – hole (Pier hole) – pier (Tough CNC) – tough semi refined vehicle (Fifty percent finished CNC) – rolling, rolling traces (Knurling, Rolled thread) – (Milling flutes) – milling heat remedy (Heat treatment) – (coarse and good grinding every single one) Mill (Coarse and fine) – cleaning, packaging and warehousing (Cleaning and packing)

2.Item Particulars
 

Main competence generate shaft,pump shaft, motor shaft,rotor shaft ,blender shaft and multi -diameter shaft etc precision shaft core.
Surface Treament Anodizing/ Oxiding/ Zinc plating/ Nickel plating/ Chrome plating/ Silver plating/ Gold plating/ Imitation gold plating/ Sand blasted/ Brushed/ Silk display/ Passivation/ CZPT coating/ Painting/ Alodine/ Warmth remedy/ Teflon and many others.
Tolerance +/-.005mm or +/- .0002″
Material Stainless Steel,Carbon Steel
We handle several other sort of materials. Remember to speak to us if your required substance is not shown over.
Inspecation Equipment Coordinate measuring machining/ Projector/ Caliper/ Microscope/ Micrometer/ CZPT gauge/ Roughness tester/ Gauge block/ Thread gauge and many others.
Top quality Handle a hundred% inspection
Tailored Yes,all are CZPT ized according clients’ drawings style or sample
Payment Way  T/T, CZPT ern CZPT ,Paypal
Packaging  1:Anti-rust oil OPP bags and cartons for outer offers.  
2: CZPT er’s necessity.
Shipping (1)-100kg: categorical & air freight priority  
(2)>100kg: sea freight precedence  
(3)As for every CZPT ized technical specs.

3.Items processing:

FAQ:

one.Can we  get a sample ahead of purchasing?
   Sure,sample is free of charge,you have to pay freight expense or offer us your company collect couire account amount.tks

two.All products all are CZPT  ?
 Yes,our specialized in producing and exporting various shafts and pin,all are higher high quality and CZPT ized in accordance to clients’ drawings or samples.

three.Are you manufacturing unit or a trading company  ?
We are manuacturer,and CZPT manufacturing facility is in HangZhou,china.
welcome to pay a visit to us at any time.

4.Why select us?
Since we can help you make high quanlity and  CZPT shaft in accordance to your layout drawing.
welcome to CZPT   products whenever.
Sure,competive cost and good shipping and delivery time support

 

Internal yokes – there are two, at each finish of the PTO shaft – tractor and put into action. This is soldered to the driver’s stop. Cardan Joints – There are two, situated on each end of the PTO shaft. Outer Yokes – There are two, found on both ends of the PTO shaft. It has a “Y” link to u and a woman gap. Basic safety Chains – Chains are utilised to safe PTO shafts to products and tractors. Protection Guards – These cones are situated at each finishes.