Tag Archives: auto motor

China high quality Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission

Product Description

 Material:

Stainless steelSS201,SS303,SS304,SS316,SS416,SS420,17-4PH,SUS440C 

AluminumAL2571,AL5754(Almg3),AL5083,AL6061,AL6063,AL5052,AL7075

Carbon steelQ235,S235JR,1571, 1015, 1571, 1571, 1030, 1035, 1040, 1045

Alloy steel40Cr,15CrMo,4140,4340,35CrMo,16MnCr5

Brass/Copper/BronzeC11000, C15710, C12000, C26000, C36000, etc.etc…

Stainless Steel (201, 302, 303, 304, 316, 420, 430) etc…

Steel (mild steel, Q235, 20#, 45#) etc…

Process:

CNC Machining, turning,milling, lathe machining, boring, grinding, drilling,broaching, stamping,etc…

Surface treatment:

Clear/color anodized; Hard anodized; Powder-coating;Sand-blasting; Painting;    

Nickel plating; Chrome plating; Zinc plating; Silver/gold plating; 

Black oxide coating, Polishing etc…

Gerenal Tolerance:(+/-mm)

Gear grade :7Gread (ISO)

Run Out:0.005mm

Roundness:0.001mm

ID/OD Grinding: 0.002

Roughness : Ra 0.05 Rz 0.2

Certification:

IATF 16949, ISO140001

Experience:

16 years of  machining products

Packaging :

Standard: carton with plastic bag protecting

For large quantity: pallet or wooden box as required

Lead time :

In general:30-60days

Term of Payment:

T/T,  L/C, etc

Minimum Order:

Comply with customer’s demand

Delivery way:

Express(DHL,Fedex, UPS,TNT,EMS), By Sea, By air, or as required

ZheZheJiang nlead Precision Co., Ltd. which focuses on CNC machining, including milling, turning, auto-lathe turning,holing,grinding, heat treatment from raw materials of bars, tube, extruded profiles, blanks of cold forging & hot forging, aluminum die casting.
We provide one-stop service, from professional design analysis, to free quote, fast prototype, IATF16949 & ISO14001 standard manufacturing, to safe shipping and great after-sales services.During 16 years, we have win lots of trust in the global market, most of them come from North America and Europe.
Now you may have steady customers, and hope you can keep us in  the archives to get more market news.
Sunlead produce all kinds of machining parts according to customer’s drawing, we can produces stainless steel Turned parts,carbon steel Turned parts, aluminum turned parts,brass & copper turned parts.
Please feel free to send inquiry to us, and our professional sales manager will get back to you ASAP!

FAQ:
Q1: How can I get the samples?
A: If you need some samples to test, you should pay for the transportation freight of samples and our samples cost.
Q2: Can we have our marking,Logo or company name to be printed on your products or package?
A: Sure. Your marking,logo,or company name can be put on your products by Laser machine
Q3: How to order?
A: Please send us your purchase order by Email, or you can ask us to send you a Performa invoice for your order. We need to know the following information for your order.
1) Product information-Quantity, Specification ( Size, Material, Technological and Packing requirements etc.)
2) Delivery time required
3) Shipping information-Company name, Street address, Phone&Fax number, Destination sea port.
4) Forwarder’s contact details if there’s any in China.
Q4: When can you get the price?
We usually quote within 48 hours after we get your inquiry. If you are very urgent to get the price, please call us or tell us in your email so that we will regard your inquiry priority. Kindly note that if your inquiry is with more details then the price we quote will be more accurate
.Q5: How can you get a sample to check our quality?
After price confirmation, you can require for samples to check our quality
.Q6: What kind of files do we accept for drawing?
A: PDF, CAD,STP,STEP
Q7: What about the lead time for mass production?
Honestly, it depends on the order quantity and the season you place the order. Generally speaking,it would need about 30-60days to finish the sample.
Q8: What is our terms of delivery?
We accept EXW, FOB, CFR, CIF, DDU, DDP, etc. You can choose the 1 which is the most convenient or cost effective for you.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard: GB, EN, API650, China GB Code, JIS Code, TEMA, ASME
Surface Treatment: Polishing
Heat Treatment: as Requirement
Samples:
US$ 3.5/Piece
1 Piece(Min.Order)

|

Order Sample

According to requirement
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

spline shaft

How do spline shafts contribute to efficient power transmission?

Spline shafts play a vital role in enabling efficient power transmission in various mechanical systems. Here’s a detailed explanation of how spline shafts contribute to efficient power transmission:

1. Torque Transmission:

Spline shafts are designed to transmit torque from one component to another. They provide a positive, non-slip connection that allows for efficient power transfer without slippage or loss of energy. The splines on the shaft engage with corresponding splines on the mating component, creating a strong mechanical connection for torque transmission.

2. Load Distribution:

Spline shafts distribute the applied load evenly across the engagement surfaces. The teeth or grooves on the shaft’s spline profile ensure that the load is shared across multiple contact points. This even load distribution helps prevent localized stress concentrations and reduces the risk of premature wear or failure. Efficient load distribution ensures that power is transmitted smoothly and reliably.

3. Misalignment Compensation:

Spline shafts can accommodate a certain degree of misalignment between the mating components. The spline profile design allows for angular or parallel misalignment without compromising the power transmission capability. This misalignment compensation capability is crucial in maintaining efficient power transmission in situations where perfect alignment is challenging or subject to variations.

4. High Torque Capacity:

Spline shafts are designed to withstand high torque levels. The spline profile, engagement length, and material selection are optimized to handle the expected torque requirements. This high torque capacity ensures that the shaft can efficiently transmit power without experiencing excessive deflection or failure under normal operating conditions.

5. Torsional Stiffness:

Spline shafts exhibit high torsional stiffness, which means they resist twisting or torsional deflection when subjected to torque. The shaft’s design, including its diameter, spline profile, and material properties, contributes to its torsional stiffness. High torsional stiffness minimizes power loss due to deformation or flexing of the shaft, allowing for efficient power transmission.

6. Reliable Connection:

Spline shafts provide a reliable and repeatable connection between the driving and driven components. Once properly engaged, the spline shaft maintains its connection, ensuring consistent power transmission over time. This reliability is crucial in maintaining efficiency and preventing power loss or interruptions during operation.

7. Minimal Backlash:

Backlash refers to the slight rotational play or clearance between mating components. Spline shafts, when properly designed and manufactured, can minimize backlash in the power transmission system. Reduced backlash ensures smoother operation, improved accuracy, and efficiency by minimizing power losses associated with reversing or changing direction.

8. Compact Design:

Spline shafts offer a compact and space-efficient solution for power transmission. Their design allows for a relatively small footprint while providing robust torque transmission capabilities. The compact design is particularly advantageous in applications where space is limited, such as automotive drivetrains or compact machinery.

By incorporating spline shafts into mechanical systems, engineers can achieve efficient power transmission, ensuring that power is effectively transferred from the driving source to the driven components. The unique design features of spline shafts enable reliable torque transmission, even load distribution, misalignment compensation, high torque capacity, torsional stiffness, reliable connections, minimal backlash, and compactness.

spline shaft

How do spline shafts handle variations in load capacity and weight?

Spline shafts are designed to handle variations in load capacity and weight in mechanical systems. Here’s how they accomplish this:

1. Material Selection:

Spline shafts are typically made from high-strength materials such as steel or alloy, chosen for their ability to withstand heavy loads and provide durability. The selection of materials takes into account factors such as tensile strength, yield strength, and fatigue resistance to ensure the shaft can handle variations in load capacity and weight.

2. Engineering Design:

Spline shafts are designed with consideration for the anticipated loads and weights they will encounter. The dimensions, profile, and number of splines are determined based on the expected torque requirements and the magnitude of the applied loads. By carefully engineering the design, spline shafts can handle variations in load capacity and weight while maintaining structural integrity and reliable performance.

3. Load Distribution:

The interlocking engagement of spline shafts allows for effective load distribution along the length of the shaft. This helps distribute the applied loads evenly, preventing localized stress concentrations and minimizing the risk of deformation or failure. By distributing the load, spline shafts can handle variations in load capacity and weight without compromising their performance.

4. Structural Reinforcement:

In applications with higher load capacities or heavier weights, spline shafts may incorporate additional structural features to enhance their strength. This can include thicker spline teeth, larger spline diameters, or reinforced sections along the shaft. By reinforcing critical areas, spline shafts can handle increased loads and weights while maintaining their integrity.

5. Lubrication and Surface Treatment:

Proper lubrication is essential for spline shafts to handle variations in load capacity and weight. Lubricants reduce friction between the mating surfaces, minimizing wear and preventing premature failure. Additionally, surface treatments such as coatings or heat treatments can enhance the hardness and wear resistance of the spline shaft, improving its ability to handle varying loads and weights.

6. Testing and Validation:

Spline shafts undergo rigorous testing and validation to ensure they meet the specified load capacity and weight requirements. This may involve laboratory testing, simulation analysis, or field testing under real-world conditions. By subjecting spline shafts to thorough testing, manufacturers can verify their performance and ensure they can handle variations in load capacity and weight.

Overall, spline shafts are designed and engineered to handle variations in load capacity and weight by utilizing appropriate materials, optimizing the design, distributing loads effectively, incorporating structural reinforcement when necessary, implementing proper lubrication and surface treatments, and conducting thorough testing and validation. These measures enable spline shafts to reliably transmit torque and handle varying loads in diverse mechanical applications.

spline shaft

What is a spline shaft and what is its primary function?

A spline shaft is a mechanical component that consists of a series of ridges or teeth (called splines) that are machined onto the surface of the shaft. Its primary function is to transmit torque while allowing for the relative movement or sliding of mating components. Here’s a detailed explanation:

1. Structure and Design:

A spline shaft typically has a cylindrical shape with external or internal splines. The external spline shaft has splines on the outer surface, while the internal spline shaft has splines on the inner bore. The number, size, and shape of the splines can vary depending on the specific application and design requirements.

2. Torque Transmission:

The main function of a spline shaft is to transmit torque between two mating components, such as gears, couplings, or other rotational elements. The splines on the shaft engage with corresponding splines on the mating component, creating a mechanical interlock. When torque is applied to the spline shaft, the engagement between the splines ensures that the rotational force is transferred from the shaft to the mating component, allowing the system to transmit power.

3. Relative Movement:

Unlike other types of shafts, a spline shaft allows for relative movement or sliding between the shaft and the mating component. This sliding motion can be axial (along the shaft’s axis) or radial (perpendicular to the shaft’s axis). The splines provide a precise and controlled interface that allows for this movement while maintaining torque transmission. This feature is particularly useful in applications where axial or radial displacement or misalignment needs to be accommodated.

4. Load Distribution:

Another important function of a spline shaft is to distribute the applied load evenly along its length. The splines create multiple contact points between the shaft and the mating component, which helps to distribute the torque and axial or radial forces over a larger surface area. This load distribution minimizes stress concentrations and reduces the risk of premature wear or failure.

5. Versatility and Applications:

Spline shafts find applications in various industries and systems, including automotive, aerospace, machinery, and power transmission. They are commonly used in gearboxes, drive systems, power take-off units, steering systems, and many other rotational mechanisms where torque transmission, relative movement, and load distribution are essential.

6. Design Considerations:

When designing a spline shaft, factors such as the torque requirements, speed, applied loads, and environmental conditions need to be considered. The spline geometry, material selection, and surface finish are critical for ensuring proper engagement, load-bearing capacity, and durability of the spline shaft.

In summary, a spline shaft is a mechanical component with splines that allows for torque transmission while accommodating relative movement or sliding between mating components. Its primary function is to transmit rotational force, distribute loads, and enable axial or radial displacement in various applications requiring precise torque transfer and flexibility.

China high quality Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission  China high quality Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission
editor by CX 2024-03-14

China Professional Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission

Product Description

 

Basic Info. of Our Customized CNC Machining Parts
Quotation According To Your Drawings or Samples. (Size, Material, Thickness, Processing Content And Required Technology, etc.)
Tolerance  +/-0.005 – 0.01mm (Customizable)
Surface Roughness Ra0.2 – Ra3.2 (Customizable)
Materials Available Aluminum, Copper, Brass, Stainless Steel, Titanium, Iron, Plastic, Acrylic, PE, PVC, ABS, POM, PTFE etc.
Surface Treatment Polishing, Surface Chamfering, Hardening and Tempering, Nickel plating, Chrome plating, zinc plating, Laser engraving, Sandblasting, Passivating, Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film, Brushing, etc.
Processing Hot/Cold forging, Heat treatment, CNC Turning, Milling, Drilling and Tapping, Surface Treatment, Laser Cutting, Stamping, Die Casting, Injection Molding, etc.
Testing Equipment Coordinate Measuring Machine (CMM) / Vernier Caliper/ / Automatic Height Gauge /Hardness Tester /Surface Roughness Teste/Run-out Instrument/Optical Projector, Micrometer/ Salt spray testing machine
Drawing Formats PRO/E, Auto CAD, CHINAMFG Works , UG, CAD / CAM / CAE, PDF
Our Advantages 1.) 24 hours online service & quickly quote and delivery.
2.) 100% quality inspection (with Quality Inspection Report) before delivery. All our products are manufactured under ISO 9001:2015.
3.) A strong, professional and reliable technical team with 16+ years of manufacturing experience.
4.) We have stable supply chain partners, including raw material suppliers, bearing suppliers, forging plants, surface treatment plants, etc.
5.) We can provide customized assembly services for those customers who have assembly needs.

 

Available Material
Stainless Steel    SS201,SS301, SS303, SS304, SS316, SS416, etc.
Steel    mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45#, etc.
Brass    HPb63, HPb62, HPb61, HPb59, H59, H62, H68, H80, etc.
Copper     C11000, C12000,C12000, C36000 etc.
Aluminum     A380, AL2571, AL6061, Al6063, AL6082, AL7075, AL5052, etc.
Iron     A36, 45#, 1213, 12L14, 1215 etc.
Plastic     ABS, PC, PE, POM, Delrin, Nylon, PP, PEI, Peek etc.
Others     Various types of Titanium alloy, Rubber, Bronze, etc.

Available Surface Treatment
Stainless Steel Polishing, Passivating, Sandblasting, Laser engraving, etc.
Steel Zinc plating, Oxide black, Nickel plating, Chrome plating, Carburized, Powder Coated, etc.
Aluminum parts Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film, Brushing, Polishing, etc.
Plastic Plating gold(ABS), Painting, Brushing(Acylic), Laser engraving, etc.

FAQ:

Q1: Are you a trading company or a factory?
A1: We are a factory

Q2: How long is your delivery time?
A2: Samples are generally 3-7 days; bulk orders are 10-25 days, depending on the quantity and parts requirements.

Q3: Do you provide samples? Is it free or extra?
A3: Yes, we can provide samples, and we will charge you based on sample processing. The sample fee can be refunded after placing an order in batches.

Q4: Do you provide design drawings service?
A4: We mainly customize according to the drawings or samples provided by customers. For customers who don’t know much about drawing, we also   provide design and drawing services. You need to provide samples or sketches.

Q5: What about drawing confidentiality?
A5: The processed samples and drawings are strictly confidential and will not be disclosed to anyone else.

Q6: How do you guarantee the quality of your products?
A6: We have set up multiple inspection procedures and can provide quality inspection report before delivery. And we can also provide samples for you to test before mass production.
 

Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized
Material: Metal
Application: Metal Recycling Machine, Metal Cutting Machine, Metal Straightening Machinery, Metal Spinning Machinery, Metal Processing Machinery Parts, Metal forging Machinery, Metal Engraving Machinery, Metal Drawing Machinery, Metal Coating Machinery, Metal Casting Machinery
Tolerance: +/-0.005 – 0.01mm
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spline shaft

How do spline shafts contribute to efficient power transmission?

Spline shafts play a vital role in enabling efficient power transmission in various mechanical systems. Here’s a detailed explanation of how spline shafts contribute to efficient power transmission:

1. Torque Transmission:

Spline shafts are designed to transmit torque from one component to another. They provide a positive, non-slip connection that allows for efficient power transfer without slippage or loss of energy. The splines on the shaft engage with corresponding splines on the mating component, creating a strong mechanical connection for torque transmission.

2. Load Distribution:

Spline shafts distribute the applied load evenly across the engagement surfaces. The teeth or grooves on the shaft’s spline profile ensure that the load is shared across multiple contact points. This even load distribution helps prevent localized stress concentrations and reduces the risk of premature wear or failure. Efficient load distribution ensures that power is transmitted smoothly and reliably.

3. Misalignment Compensation:

Spline shafts can accommodate a certain degree of misalignment between the mating components. The spline profile design allows for angular or parallel misalignment without compromising the power transmission capability. This misalignment compensation capability is crucial in maintaining efficient power transmission in situations where perfect alignment is challenging or subject to variations.

4. High Torque Capacity:

Spline shafts are designed to withstand high torque levels. The spline profile, engagement length, and material selection are optimized to handle the expected torque requirements. This high torque capacity ensures that the shaft can efficiently transmit power without experiencing excessive deflection or failure under normal operating conditions.

5. Torsional Stiffness:

Spline shafts exhibit high torsional stiffness, which means they resist twisting or torsional deflection when subjected to torque. The shaft’s design, including its diameter, spline profile, and material properties, contributes to its torsional stiffness. High torsional stiffness minimizes power loss due to deformation or flexing of the shaft, allowing for efficient power transmission.

6. Reliable Connection:

Spline shafts provide a reliable and repeatable connection between the driving and driven components. Once properly engaged, the spline shaft maintains its connection, ensuring consistent power transmission over time. This reliability is crucial in maintaining efficiency and preventing power loss or interruptions during operation.

7. Minimal Backlash:

Backlash refers to the slight rotational play or clearance between mating components. Spline shafts, when properly designed and manufactured, can minimize backlash in the power transmission system. Reduced backlash ensures smoother operation, improved accuracy, and efficiency by minimizing power losses associated with reversing or changing direction.

8. Compact Design:

Spline shafts offer a compact and space-efficient solution for power transmission. Their design allows for a relatively small footprint while providing robust torque transmission capabilities. The compact design is particularly advantageous in applications where space is limited, such as automotive drivetrains or compact machinery.

By incorporating spline shafts into mechanical systems, engineers can achieve efficient power transmission, ensuring that power is effectively transferred from the driving source to the driven components. The unique design features of spline shafts enable reliable torque transmission, even load distribution, misalignment compensation, high torque capacity, torsional stiffness, reliable connections, minimal backlash, and compactness.

spline shaft

Can spline shafts be used in automotive applications, and if so, how?

Yes, spline shafts are extensively used in automotive applications due to their ability to transmit torque and provide reliable power transmission. Here’s how spline shafts are used in automotive applications:

Spline shafts play a crucial role in various automotive systems and components, including:

  • Drivetrain: Spline shafts are an integral part of the drivetrain system in vehicles. They transmit torque from the engine to the wheels, allowing the vehicle to move. Spline shafts are present in components such as the transmission, differential, and axle shafts. In manual transmissions, the spline shaft connects the transmission input shaft to the clutch disc, enabling power transfer from the engine. In automatic transmissions, spline shafts are used in the torque converter and the output shaft.
  • Steering System: Spline shafts are employed in the steering system to transmit torque from the steering wheel to the steering rack or gearbox. They provide a direct connection between the driver’s input and the movement of the wheels, allowing for steering control.
  • Power Take-Off (PTO) Systems: Some vehicles, particularly commercial trucks and agricultural machinery, utilize PTO systems. Spline shafts are used in PTOs to transfer power from the vehicle’s engine to auxiliary equipment, such as hydraulic pumps, generators, or agricultural implements.
  • Transfer Cases: In four-wheel-drive (4WD) or all-wheel-drive (AWD) vehicles, transfer cases are used to distribute power to the front and rear axles. Spline shafts are utilized in the transfer case to transfer torque between the transmission and the front and rear drive shafts.
  • Propeller Shafts: Spline shafts are present in propeller shafts, which transmit torque from the transmission or transfer case to the rear axle in rear-wheel-drive vehicles. They accommodate the relative movement between the transmission and the axle due to suspension travel.

In automotive applications, spline shafts are designed to withstand high torque loads, provide precise torque transmission, and accommodate misalignments and fluctuations in operating conditions. They are typically made from high-strength steel or alloy materials to ensure durability and resistance to wear. Proper lubrication is essential to minimize friction and ensure smooth operation.

The use of spline shafts in automotive applications allows for efficient power transmission, precise control, and reliable performance, contributing to the overall functionality and drivability of vehicles.

spline shaft

Can you explain the common applications of spline shafts in machinery?

Spline shafts have various common applications in machinery where torque transmission, relative movement, and load distribution are essential. Here’s a detailed explanation:

1. Gearboxes and Transmissions:

Spline shafts are commonly used in gearboxes and transmissions where they facilitate the transmission of torque from the input shaft to the output shaft. The splines on the shaft engage with corresponding splines on the gears, allowing for precise torque transfer and accommodating relative movement between the gears.

2. Power Take-Off (PTO) Units:

In agricultural and industrial machinery, spline shafts are employed in power take-off (PTO) units. PTO units allow the transfer of power from the engine to auxiliary equipment, such as pumps, generators, or farm implements. Spline shafts enable the torque transfer and accommodate the relative movement required for PTO operation.

3. Steering Systems:

Spline shafts play a crucial role in steering systems, especially in vehicles. They are used in steering columns to transmit torque from the steering wheel to the steering rack or gearbox. The splines on the shaft ensure precise torque transfer while allowing for the axial movement required for steering wheel adjustment.

4. Machine Tools:

Spline shafts find applications in machine tools such as milling machines, lathes, and grinding machines. They are used to transmit torque and enable the relative movement required for tool positioning, feed control, and spindle rotation. Spline shafts ensure accurate and controlled movement of the machine tool components.

5. Industrial Pumps and Compressors:

Spline shafts are utilized in various types of pumps and compressors, including centrifugal pumps, gear pumps, and reciprocating compressors. They transmit torque from the driver (such as an electric motor or an engine) to the impeller or rotor, enabling fluid or gas transfer. Spline shafts accommodate the axial or radial movement caused by thermal expansion or misalignment.

6. Printing and Packaging Machinery:

Spline shafts are integral components in printing and packaging machinery. They are used in processes such as web handling, where precise torque transmission and relative movement are required for tasks like tension control, registration, and material feeding. Spline shafts ensure accurate and synchronized movement of the printing and packaging elements.

7. Aerospace and Defense Systems:

In the aerospace and defense industries, spline shafts are utilized in various applications, including aircraft landing gear systems, missile guidance systems, and helicopter rotor systems. They enable torque transmission, accommodate relative movement, and ensure precise control in critical aerospace and defense mechanisms.

8. Construction and Earthmoving Equipment:

Spline shafts are employed in construction and earthmoving equipment, such as excavators, bulldozers, and loaders. They are used in hydraulic systems to transmit torque from the hydraulic motor to the driven components, such as the digger arm or the bucket. Spline shafts enable efficient power transfer and allow for the articulation and movement of the equipment.

These are just a few examples of the common applications of spline shafts in machinery. Their versatility, torque transmission capabilities, and ability to accommodate relative movement make them essential components in various industries where precise power transfer and flexibility are required.

China Professional Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission  China Professional Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission
editor by CX 2023-11-06

China Best Sales Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission

Product Description

 

Basic Info. of Our Customized CNC Machining Parts
Quotation According To Your Drawings or Samples. (Size, Material, Thickness, Processing Content And Required Technology, etc.)
Tolerance  +/-0.005 – 0.01mm (Customizable)
Surface Roughness Ra0.2 – Ra3.2 (Customizable)
Materials Available Aluminum, Copper, Brass, Stainless Steel, Titanium, Iron, Plastic, Acrylic, PE, PVC, ABS, POM, PTFE etc.
Surface Treatment Polishing, Surface Chamfering, Hardening and Tempering, Nickel plating, Chrome plating, zinc plating, Laser engraving, Sandblasting, Passivating, Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film, Brushing, etc.
Processing Hot/Cold forging, Heat treatment, CNC Turning, Milling, Drilling and Tapping, Surface Treatment, Laser Cutting, Stamping, Die Casting, Injection Molding, etc.
Testing Equipment Coordinate Measuring Machine (CMM) / Vernier Caliper/ / Automatic Height Gauge /Hardness Tester /Surface Roughness Teste/Run-out Instrument/Optical Projector, Micrometer/ Salt spray testing machine
Drawing Formats PRO/E, Auto CAD, CHINAMFG Works , UG, CAD / CAM / CAE, PDF
Our Advantages 1.) 24 hours online service & quickly quote and delivery.
2.) 100% quality inspection (with Quality Inspection Report) before delivery. All our products are manufactured under ISO 9001:2015.
3.) A strong, professional and reliable technical team with 16+ years of manufacturing experience.
4.) We have stable supply chain partners, including raw material suppliers, bearing suppliers, forging plants, surface treatment plants, etc.
5.) We can provide customized assembly services for those customers who have assembly needs.

 

Available Material
Stainless Steel    SS201,SS301, SS303, SS304, SS316, SS416, etc.
Steel    mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45#, etc.
Brass    HPb63, HPb62, HPb61, HPb59, H59, H62, H68, H80, etc.
Copper     C11000, C12000,C12000, C36000 etc.
Aluminum     A380, AL2571, AL6061, Al6063, AL6082, AL7075, AL5052, etc.
Iron     A36, 45#, 1213, 12L14, 1215 etc.
Plastic     ABS, PC, PE, POM, Delrin, Nylon, PP, PEI, Peek etc.
Others     Various types of Titanium alloy, Rubber, Bronze, etc.

Available Surface Treatment
Stainless Steel Polishing, Passivating, Sandblasting, Laser engraving, etc.
Steel Zinc plating, Oxide black, Nickel plating, Chrome plating, Carburized, Powder Coated, etc.
Aluminum parts Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film, Brushing, Polishing, etc.
Plastic Plating gold(ABS), Painting, Brushing(Acylic), Laser engraving, etc.

FAQ:

Q1: Are you a trading company or a factory?
A1: We are a factory

Q2: How long is your delivery time?
A2: Samples are generally 3-7 days; bulk orders are 10-25 days, depending on the quantity and parts requirements.

Q3: Do you provide samples? Is it free or extra?
A3: Yes, we can provide samples, and we will charge you based on sample processing. The sample fee can be refunded after placing an order in batches.

Q4: Do you provide design drawings service?
A4: We mainly customize according to the drawings or samples provided by customers. For customers who don’t know much about drawing, we also   provide design and drawing services. You need to provide samples or sketches.

Q5: What about drawing confidentiality?
A5: The processed samples and drawings are strictly confidential and will not be disclosed to anyone else.

Q6: How do you guarantee the quality of your products?
A6: We have set up multiple inspection procedures and can provide quality inspection report before delivery. And we can also provide samples for you to test before mass production.
 

Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized
Material: Metal
Application: Metal Recycling Machine, Metal Cutting Machine, Metal Straightening Machinery, Metal Spinning Machinery, Metal Processing Machinery Parts, Metal forging Machinery, Metal Engraving Machinery, Metal Drawing Machinery, Metal Coating Machinery, Metal Casting Machinery
Type of Order: Custom Order
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spline shaft

Can spline shafts be customized for specific machinery and equipment?

Yes, spline shafts can be customized to suit specific machinery and equipment requirements. Here’s a detailed explanation:

1. Size and Length:

Spline shafts can be customized in terms of size and length to fit the dimensions of the machinery or equipment. Manufacturers can design spline shafts with the appropriate diameter, overall length, and spline length to ensure a proper fit within the system.

2. Spline Profile:

The spline profile can be customized based on the specific application. Different spline profiles, such as involute, serrated, or helical, can be used to optimize torque transmission, load distribution, and engagement characteristics based on the requirements of the machinery or equipment.

3. Number of Splines:

The number of splines on the shaft can be customized to match the mating component. The number of splines determines the engagement area and affects the torque-carrying capacity of the spline shaft. By adjusting the number of splines, manufacturers can tailor the spline shaft to the specific torque and load requirements of the machinery or equipment.

4. Material Selection:

The choice of material for spline shafts can be customized based on the operating conditions and environmental factors of the machinery or equipment. Different materials, such as alloy steels or stainless steels, can be selected to provide the necessary strength, durability, corrosion resistance, or other specific properties required for the application.

5. Surface Treatment:

The surface of spline shafts can be customized with various treatments to enhance their performance. Surface treatments like heat treatment, coating, or plating can be applied to improve hardness, wear resistance, or corrosion resistance based on the specific requirements of the machinery or equipment.

6. Tolerances and Fit:

Tolerances and fit between the spline shaft and mating components can be customized to achieve the desired clearance or interference fit. This ensures proper engagement, smooth operation, and optimal performance of the machinery or equipment.

7. Special Features:

In certain cases, spline shafts can be customized with additional features to meet specific needs. This may include the incorporation of keyways, threads, or other specialized features required for the machinery or equipment.

Manufacturers and engineers work closely with the machinery or equipment designers to understand the specific requirements and tailor the spline shafts accordingly. By considering factors such as size, spline profile, number of splines, material selection, surface treatment, tolerances, fit, and any special features, customized spline shafts can be developed to ensure optimal performance and compatibility with the machinery or equipment.

It is important to consult with experienced spline shaft manufacturers or engineering professionals to determine the most suitable customization options for a particular machinery or equipment application.

spline shaft

Can spline shafts be repaired or maintained when necessary?

Yes, spline shafts can be repaired and maintained when necessary to ensure their continued functionality and performance. Here are some ways spline shafts can be repaired and maintained:

1. Inspection and Assessment:

When an issue is suspected with a spline shaft, the first step is to conduct a thorough inspection. This involves examining the shaft for any signs of wear, damage, or misalignment. Special attention is given to the spline teeth, which may show signs of wear or deformation. Through inspection and assessment, the extent of the repair or maintenance required can be determined.

2. Spline Tooth Repair:

If the spline teeth are damaged or worn, they can be repaired or replaced. Repair methods may include re-machining the teeth to restore their original profile, filling and reshaping the worn areas using specialized welding techniques, or replacing the damaged section of the spline shaft. The specific repair method depends on the severity of the damage and the material of the spline shaft.

3. Lubrication and Cleaning:

Regular lubrication and cleaning are essential for maintaining spline shafts. Lubricants help reduce friction and wear between the mating surfaces, while cleaning removes contaminants that can affect the spline’s engagement. During maintenance, old lubricants are removed, and fresh lubricants are applied to ensure smooth operation and prevent premature failure.

4. Surface Treatment:

If the spline shaft undergoes wear or corrosion, surface treatment can be applied to restore its condition. This may involve applying coatings or treatments to enhance the hardness, wear resistance, or corrosion resistance of the spline shaft. Surface treatments can improve the longevity and performance of the spline shaft, reducing the need for frequent repairs.

5. Balancing and Alignment:

If a spline shaft is experiencing vibration or misalignment issues, it may require balancing or realignment. Balancing involves redistributing mass along the shaft to minimize vibrations, while alignment ensures proper mating and engagement with other components. Balancing and alignment procedures help optimize the performance and longevity of the spline shaft.

6. Replacement:

In cases where the spline shaft is severely damaged or worn beyond repair, replacement may be necessary. Replacement spline shafts can be sourced from manufacturers or specialized suppliers who can provide shafts that meet the required specifications and tolerances.

It’s important to note that the repair and maintenance of spline shafts should be carried out by qualified professionals with expertise in precision machining and mechanical systems. They have the knowledge and tools to properly assess, repair, or replace spline shafts, ensuring the integrity and functionality of the system in which they are used.

By implementing regular maintenance and timely repairs, spline shafts can be kept in optimal condition, extending their lifespan and maintaining their performance in various mechanical applications.

spline shaft

What are the key components and design features of a spline shaft?

A spline shaft consists of several key components and incorporates specific design features to ensure its functionality and performance. Here’s a detailed explanation:

1. Shaft Body:

The main component of a spline shaft is the shaft body, which provides the structural integrity and serves as the base for the spline features. The shaft body is typically cylindrical in shape and made from materials such as steel, stainless steel, or other alloyed metals. The material selection depends on factors like the application requirements, torque loads, and environmental conditions.

2. Splines:

The splines are the key design feature of a spline shaft. They are ridges or teeth that are machined onto the surface of the shaft. The splines create the interlocking mechanism with mating components, allowing for torque transmission and relative movement. The number, size, and shape of the splines can vary depending on the application requirements and design specifications.

3. Spline Profile:

The spline profile refers to the specific shape or geometry of the splines. Common types of spline profiles include involute, straight-sided, and serrated. The spline profile is chosen based on factors such as the torque transmission requirements, load distribution, and the desired engagement characteristics with mating components. The spline profile ensures optimal contact and torque transfer between the spline shaft and the mating component.

4. Spline Fit:

The spline fit refers to the dimensional relationship between the spline shaft and the mating component. It determines the clearance or interference between the splines, ensuring proper engagement and transmission of torque. The spline fit can be categorized into different classes, such as clearance fit, transition fit, or interference fit, based on the desired level of clearance or interference.

5. Surface Finish:

The surface finish of the spline shaft is crucial for its performance. The splines and the shaft body should have a smooth and consistent surface finish to minimize friction, wear, and the risk of stress concentrations. The surface finish can be achieved through machining, grinding, or other surface treatment methods to meet the required specifications.

6. Lubrication:

To ensure smooth operation and reduce wear, lubrication is often employed for spline shafts. Lubricants with appropriate viscosity and lubricating properties are applied to the spline interface to minimize friction, dissipate heat, and prevent premature wear or damage to the splines and mating components. Lubrication also helps in maintaining the functionality and prolonging the service life of the spline shaft.

7. Machining Tolerances:

Precision machining is critical for spline shafts to achieve the required dimensional accuracy and ensure proper engagement with mating components. Tight machining tolerances are maintained during the manufacturing process to ensure the spline profile, dimensions, and surface finish meet the specified design requirements. This ensures the interchangeability and compatibility of spline shafts in various applications.

In summary, the key components and design features of a spline shaft include the shaft body, splines, spline profile, spline fit, surface finish, lubrication, and machining tolerances. These elements work together to enable torque transmission, relative movement, and load distribution while ensuring the functionality, durability, and performance of the spline shaft.

China Best Sales Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission  China Best Sales Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission
editor by CX 2023-10-03

China Dongguan Hardware CNC Machining Turning Metal Aluminum Accessories Custom Spline Shaft Stainless Steel Motor Shaft Pin Auto Parts drive shaft carrier bearing

Item Description

Solution Description:
manufacturing unit immediately HangZhou shuangxin custom-made aluminum/brass/ ss stainless metal/plastic cnc turning lathe machined milling milled turned machining component

Specification According to your prerequisite.
 Color  According to customer’s desire
  Content  Stainless steel, Brass, Copper, Aluminum, Carbon metal, Alloy metal and many others.
Area Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, The wreath oxygen resin spraying, The warmth disposing, Scorching-dip galvanizing, Black oxide coating, Painting, Powdering, Shade zinc-plated, Blue black zinc-plated, Rust preventive oil, Titanium alloy galvanized, Silver plating, Plastic, Electroplating, Anodizing etc.
Programs Automotive, Instrument, Electrical tools, Family appliances, Furniture, Mechanical tools, Daily dwelling tools, Digital athletics tools, Light-weight business items, Sanitation equipment, Marketplace/ Resort products supplies etc.                                          
Creating Equipment
 
CNC machine SHENGYU & SYX42..Other machines
Packaging Inner plastic bag, outer carton box, and we can also pack products in accordance to your needs.
Supply 15 Day to twenty five Times, If urgent 10 times are acceptable
Primary Marketplaces North The usa, South The usa, Jap Europe , West Europe , North Europe, South Europe, South Asia, Africa African
About us Our organization was established in October, 2000, specializing in the manufacturing of CNC/Automobile lathe, springs, shafts, screws, stamping components and other steel parts. Our primary manufacturing modes are designing and proofing primarily based on customers’ drawings or samples.

Company Details:

FAQ:
Q1:Are you a Manufacturing facility or buying and selling company?
We are a factory which is located inTangxiaTown,HangZhou City.
Q2: When will the goods be deliveried if the order has been put?
We guarantee we do supply our products in  15~30 times for the personalized merchandise.
Q3: What is your quality management process?
We are licensed with ISO-9001, and strictly adhere to the ISO methods. We do a hundred% testing for any of products before the buy has been deliveried.
Q4: What Certificates do you have?
Our led flashlights have been examined by ISO9001:2008RoHSHeavy Aspect Sandards which is complied with the European Directive.
Q5: What about the payment?
We acknowledge T/T, L/C for the large quantities buy, and Western union and Paypal will be settle for for the samll portions get of shaft.
 
 Why need to you decide on us?  
Wealthy Experience:
 We have been engaged in the fasteners for ten years. Our company had excellent reputation with consumers from American, Europe and Austrialia and so forth. We also have a excellent group for sale and quality control.
Great Provider:
 We will react to you inside 24 hrs. We can manufacture nonstandard components according to your drawings. And we offer best after sale services.
 Low Price:
 The price tag of our products is realistic and aggressive than other manufactures.
  Best Top quality:
We have rigid good quality management from generating to shipping and delivery.Our firm experienced powerful technology assist. We have cultivated a group of professionals who are acquainted with solution high quality , excellent at modern day principle of administration .

 

US $0.1-3.25
/ Piece
|
1,000 Pieces

(Min. Order)

###

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory
Surface Treatment: Frame
Production Type: Frame
Machining Method: CNC Machining
Material: Steel, Brass, Copper, Aluminum
Product Name: Metal Parts

###

Samples:
US$ 3.25/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Specification According to your requirement.
 Color  According to customer’s demand
  Material  Stainless steel, Brass, Copper, Aluminum, Carbon steel, Alloy steel etc.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, The wreath oxygen resin spraying, The heat disposing, Hot-dip galvanizing, Black oxide coating, Painting, Powdering, Color zinc-plated, Blue black zinc-plated, Rust preventive oil, Titanium alloy galvanized, Silver plating, Plastic, Electroplating, Anodizing etc.
Applications Automotive, Instrument, Electrical equipment, Household appliances, Furniture, Mechanical equipment, Daily living equipment, Electronic sports equipment, Light industry products, Sanitation machinery, Market/ Hotel equipment supplies etc.                                          
Producing Equipment
 
CNC machine SHENGYU & SYX42..Other machines
Packaging Inner plastic bag, outer carton box, and we can also pack products according to your requirements.
Delivery 15 Day to 25 Days, If urgent 10 days are acceptable
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, South Asia, Africa African
About us Our company was founded in October, 2000, specializing in the production of CNC/AUTO lathe, springs, shafts, screws, stamping parts and other metal parts. Our main production modes are designing and proofing based on customers’ drawings or samples.
US $0.1-3.25
/ Piece
|
1,000 Pieces

(Min. Order)

###

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory
Surface Treatment: Frame
Production Type: Frame
Machining Method: CNC Machining
Material: Steel, Brass, Copper, Aluminum
Product Name: Metal Parts

###

Samples:
US$ 3.25/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Specification According to your requirement.
 Color  According to customer’s demand
  Material  Stainless steel, Brass, Copper, Aluminum, Carbon steel, Alloy steel etc.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, The wreath oxygen resin spraying, The heat disposing, Hot-dip galvanizing, Black oxide coating, Painting, Powdering, Color zinc-plated, Blue black zinc-plated, Rust preventive oil, Titanium alloy galvanized, Silver plating, Plastic, Electroplating, Anodizing etc.
Applications Automotive, Instrument, Electrical equipment, Household appliances, Furniture, Mechanical equipment, Daily living equipment, Electronic sports equipment, Light industry products, Sanitation machinery, Market/ Hotel equipment supplies etc.                                          
Producing Equipment
 
CNC machine SHENGYU & SYX42..Other machines
Packaging Inner plastic bag, outer carton box, and we can also pack products according to your requirements.
Delivery 15 Day to 25 Days, If urgent 10 days are acceptable
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, South Asia, Africa African
About us Our company was founded in October, 2000, specializing in the production of CNC/AUTO lathe, springs, shafts, screws, stamping parts and other metal parts. Our main production modes are designing and proofing based on customers’ drawings or samples.

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting two or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is one of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects two rotating shafts. Its two parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on one side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect two shafts. They are composed of two parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is one X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between two spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China Dongguan Hardware CNC Machining Turning Metal Aluminum Accessories Custom Spline Shaft Stainless Steel Motor Shaft Pin Auto Parts     drive shaft carrier bearing	China Dongguan Hardware CNC Machining Turning Metal Aluminum Accessories Custom Spline Shaft Stainless Steel Motor Shaft Pin Auto Parts     drive shaft carrier bearing
editor by czh 2023-04-04

China weite Custom Gearbox Gear Supplier Auto Motor Parts Precision Gear Toothed Shaft Drive Gear Best with Best Sales

Problem: New
Guarantee: Unavailable
Applicable Industries: Developing Materials Retailers
Weight (KG): .01
Showroom Area: None
Video clip outgoing-inspection: Presented
Machinery Test Report: Not Available
Marketing Variety: New Item 2571
Warranty of main factors: Not Offered
Core Elements: Equipment
Composition: Other
Content: metal
Coatings: Other
Torque Potential: Stable
Design Amount: Equipment Shaft
Processing Sort: Lathing, Hobbing, Skiving
Module: M0.4-M3. / DP48
Force Angle: twenty Degree
Tolerance: .001mm-.01mm-.1mm
Precision Quality: JIS3-5/DIN7-9/ISO7-nine
Tooth Profile: Straight, Slanted, Helical, Spiral, Helix Enamel, Spline
Application: Equipment Add-ons, Industrial Device, Transmission Equipment
Dimensions: Customer’s Demands
Machining Products: CNC Machine Centres
Good quality: 100% Inspection
Packaging Details: Plastic blisterpacking bagoil paperwooden box
Port: ZheJiang HangZhou

OUR Solutions

Product TitleCustom Gears
ModelGear Module: M0.3-M6. / DP20-DP80Pulley: Standard or Custom measurement (ex: S3M, 2GT, AT5, HTD5M, XL)
Precision gradeJIS 3-5 / DIN 7-nine
MaterialBrass, NMRV Collection 12V 24V AC DC Electric Motor Worm reduction Reductor reducer gearbox C45 steel, Stainless metal, Copper, Aluminum, Alloy, PE, PVC, POM, and so forth.
Tolerance0.001mm – .01mm – .1mm
FinishShot, Sand blasting, Warmth therapy, Annealing, Tempering, Polishing, ZEDA-OZ80 motor set 80cc motor bicicleta 2 Stroke 47mm40mm OZ reed other bicycle areas petrol wheel hub motor Anodizing, etc.
OEM/ODM1. Production in accordance to customer’s necessity. 2. Offering custom made gear design and style or gear merchandise optimization. 3. Giving skilled business conversation support.4. Support Developoment and Reverse engineering provider.
Testing MachineDigital Top Gauge, Micrometer caliper , Caliper, Gear measuring equipment, Projection device, Hardness tester, etc.
Products Description Why Decide on Us was recognized in , early specializes in equipment processing of reducers. We supply personalized provider dependent on consumer needs.Considering that its establishment, we have been serving clients with a professional, quick and enthusiastic mindset.We are regarded and dependable by consumers with our high good quality standard and skills in gears.”Integrity-dependent, Group 3 Hydraulic Equipment Pump price for Building Machinery and Large industry client very first, good quality very first.” is our company’s enterprise philosophy. Every item is created with the highest normal quality. In order to satisfy the requirements of clients, we always try our greatest. Customers’ affirmation are our greatest inspiration to go forward. Packing&shipping and delivery FAQ Title goes here.Q: Are you buying and selling company or company ?A: We are a company. We give skilled custom made service in accordance to customers’ prerequisite.Q: How long is your delivery time?A: It depends on the creation procedures, the production cycle would be forty five-sixty five times.Q: Do you offer samples ?A: Yes, we could supply the sample. Products establishing price can be charged. Sample charge can be refunded after goods acquired.Q: What is your terms of payment ?A: Payment =2000 USD, Finished bore Simplex chain drive sprockets for sale with keyway thirty% T/T in advance , harmony ahead of cargo.

The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are two common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
splineshaft

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
splineshaft

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are two basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are three types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
splineshaft

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of two different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.

China weite Custom Gearbox Gear Supplier Auto Motor Parts Precision Gear Toothed Shaft Drive Gear Best     with Best Sales China weite Custom Gearbox Gear Supplier Auto Motor Parts Precision Gear Toothed Shaft Drive Gear Best     with Best Sales
editor by czh 2023-02-24

China Dongguan Hardware CNC Machining Turning Metal Aluminum Accessories Custom Spline Shaft Stainless Steel Motor Shaft Pin Auto Parts with high quality

Item Description

Item Description:
manufacturing unit straight HangZhou shuangxin tailored aluminum/brass/ ss stainless steel/plastic cnc turning lathe machined milling milled turned machining element

Specification According to your prerequisite.
 Color  According to customer’s desire
  Materials  Stainless steel, Brass, Copper, Aluminum, Carbon steel, Alloy steel etc.
Surface area Therapy Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, The wreath oxygen resin spraying, The heat disposing, Very hot-dip galvanizing, Black oxide coating, Portray, Powdering, Coloration zinc-plated, Blue black zinc-plated, Rust preventive oil, Titanium alloy galvanized, Silver plating, Plastic, Electroplating, Anodizing etc.
Applications Automotive, Instrument, Electrical gear, House appliances, Furnishings, Mechanical gear, Every day residing gear, Electronic athletics products, Gentle business products, Sanitation machinery, Market place/ Lodge equipment supplies etc.                                          
Creating Tools
 
CNC machine SHENGYU & SYX42..Other equipment
Packaging Internal plastic bag, outer carton box, and we can also pack products according to your demands.
Supply fifteen Working day to twenty five Times, If urgent 10 times are appropriate
Major Marketplaces North America, South America, Eastern Europe , West Europe , North Europe, South Europe, South Asia, Africa African
About us Our company was launched in Oct, 2000, specializing in the generation of CNC/Car lathe, springs, shafts, screws, stamping parts and other metal areas. Our primary production modes are developing and proofing dependent on customers’ drawings or samples.

Company Details:

FAQ:
Q1:Are you a Factory or buying and selling company?
We are a manufacturing unit which is positioned inTangxiaTown,HangZhou City.
Q2: When will the merchandise be deliveried if the purchase has been put?
We promise we do shipping and delivery our products in  15~thirty times for the custom-made product.
Q3: What is your quality manage procedure?
We are certified with ISO-9001, and strictly adhere to the ISO procedures. We do 100% tests for any of products before the order has been deliveried.
This autumn: What Certificates do you have?
Our led flashlights have been analyzed by ISO9001:2008RoHSHeavy Aspect Sandards which is complied with the European Directive.
Q5: What about the payment?
We settle for T/T, L/C for the massive portions purchase, and Western union and Paypal will be accept for the samll portions purchase of shaft.
 
 Why ought to you select us?  
Rich Experience:
 We have been engaged in the fasteners for 10 a long time. Our firm had great track record with consumers from American, Europe and Austrialia etc. We also have a good team for sale and top quality manage.
Good Support:
 We will reply to you inside 24 several hours. We can manufacture nonstandard parts in accordance to your drawings. And we offer you best soon after sale service.
 Minimal Value:
 The price of our goods is reasonable and competitive than other manufactures.
  Ideal Top quality:
We have rigorous high quality management from making to shipping.Our firm experienced powerful technological innovation assistance. We have cultivated a group of professionals who are acquainted with solution high quality , very good at present day principle of administration .

 

US $0.1-3.25
/ Piece
|
1,000 Pieces

(Min. Order)

###

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory
Surface Treatment: Frame
Production Type: Frame
Machining Method: CNC Machining
Material: Steel, Brass, Copper, Aluminum
Product Name: Metal Parts

###

Samples:
US$ 3.25/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Specification According to your requirement.
 Color  According to customer’s demand
  Material  Stainless steel, Brass, Copper, Aluminum, Carbon steel, Alloy steel etc.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, The wreath oxygen resin spraying, The heat disposing, Hot-dip galvanizing, Black oxide coating, Painting, Powdering, Color zinc-plated, Blue black zinc-plated, Rust preventive oil, Titanium alloy galvanized, Silver plating, Plastic, Electroplating, Anodizing etc.
Applications Automotive, Instrument, Electrical equipment, Household appliances, Furniture, Mechanical equipment, Daily living equipment, Electronic sports equipment, Light industry products, Sanitation machinery, Market/ Hotel equipment supplies etc.                                          
Producing Equipment
 
CNC machine SHENGYU & SYX42..Other machines
Packaging Inner plastic bag, outer carton box, and we can also pack products according to your requirements.
Delivery 15 Day to 25 Days, If urgent 10 days are acceptable
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, South Asia, Africa African
About us Our company was founded in October, 2000, specializing in the production of CNC/AUTO lathe, springs, shafts, screws, stamping parts and other metal parts. Our main production modes are designing and proofing based on customers’ drawings or samples.
US $0.1-3.25
/ Piece
|
1,000 Pieces

(Min. Order)

###

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory
Surface Treatment: Frame
Production Type: Frame
Machining Method: CNC Machining
Material: Steel, Brass, Copper, Aluminum
Product Name: Metal Parts

###

Samples:
US$ 3.25/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Specification According to your requirement.
 Color  According to customer’s demand
  Material  Stainless steel, Brass, Copper, Aluminum, Carbon steel, Alloy steel etc.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, The wreath oxygen resin spraying, The heat disposing, Hot-dip galvanizing, Black oxide coating, Painting, Powdering, Color zinc-plated, Blue black zinc-plated, Rust preventive oil, Titanium alloy galvanized, Silver plating, Plastic, Electroplating, Anodizing etc.
Applications Automotive, Instrument, Electrical equipment, Household appliances, Furniture, Mechanical equipment, Daily living equipment, Electronic sports equipment, Light industry products, Sanitation machinery, Market/ Hotel equipment supplies etc.                                          
Producing Equipment
 
CNC machine SHENGYU & SYX42..Other machines
Packaging Inner plastic bag, outer carton box, and we can also pack products according to your requirements.
Delivery 15 Day to 25 Days, If urgent 10 days are acceptable
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, South Asia, Africa African
About us Our company was founded in October, 2000, specializing in the production of CNC/AUTO lathe, springs, shafts, screws, stamping parts and other metal parts. Our main production modes are designing and proofing based on customers’ drawings or samples.

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When two splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by five mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to fifty-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows four concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these three components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using two different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these two methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the three factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China Dongguan Hardware CNC Machining Turning Metal Aluminum Accessories Custom Spline Shaft Stainless Steel Motor Shaft Pin Auto Parts     with high quality China Dongguan Hardware CNC Machining Turning Metal Aluminum Accessories Custom Spline Shaft Stainless Steel Motor Shaft Pin Auto Parts     with high quality
editor by czh 2022-12-17